MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabid2 Structured version   Unicode version

Theorem opabid2 4996
Description: A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006.)
Assertion
Ref Expression
opabid2  |-  ( Rel 
A  ->  { <. x ,  y >.  |  <. x ,  y >.  e.  A }  =  A )
Distinct variable group:    x, y, A

Proof of Theorem opabid2
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2951 . . . 4  |-  z  e. 
_V
2 vex 2951 . . . 4  |-  w  e. 
_V
3 opeq1 3976 . . . . 5  |-  ( x  =  z  ->  <. x ,  y >.  =  <. z ,  y >. )
43eleq1d 2501 . . . 4  |-  ( x  =  z  ->  ( <. x ,  y >.  e.  A  <->  <. z ,  y
>.  e.  A ) )
5 opeq2 3977 . . . . 5  |-  ( y  =  w  ->  <. z ,  y >.  =  <. z ,  w >. )
65eleq1d 2501 . . . 4  |-  ( y  =  w  ->  ( <. z ,  y >.  e.  A  <->  <. z ,  w >.  e.  A ) )
71, 2, 4, 6opelopab 4468 . . 3  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  <. x ,  y >.  e.  A } 
<-> 
<. z ,  w >.  e.  A )
87gen2 1556 . 2  |-  A. z A. w ( <. z ,  w >.  e.  { <. x ,  y >.  |  <. x ,  y >.  e.  A } 
<-> 
<. z ,  w >.  e.  A )
9 relopab 4993 . . 3  |-  Rel  { <. x ,  y >.  |  <. x ,  y
>.  e.  A }
10 eqrel 4957 . . 3  |-  ( ( Rel  { <. x ,  y >.  |  <. x ,  y >.  e.  A }  /\  Rel  A )  ->  ( { <. x ,  y >.  |  <. x ,  y >.  e.  A }  =  A  <->  A. z A. w ( <. z ,  w >.  e.  { <. x ,  y >.  |  <. x ,  y >.  e.  A } 
<-> 
<. z ,  w >.  e.  A ) ) )
119, 10mpan 652 . 2  |-  ( Rel 
A  ->  ( { <. x ,  y >.  |  <. x ,  y
>.  e.  A }  =  A 
<-> 
A. z A. w
( <. z ,  w >.  e.  { <. x ,  y >.  |  <. x ,  y >.  e.  A } 
<-> 
<. z ,  w >.  e.  A ) ) )
128, 11mpbiri 225 1  |-  ( Rel 
A  ->  { <. x ,  y >.  |  <. x ,  y >.  e.  A }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   A.wal 1549    = wceq 1652    e. wcel 1725   <.cop 3809   {copab 4257   Rel wrel 4875
This theorem is referenced by:  opabbi2dv  5014
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-opab 4259  df-xp 4876  df-rel 4877
  Copyright terms: Public domain W3C validator