Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabid2 Structured version   Unicode version

Theorem opabid2 4996
 Description: A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006.)
Assertion
Ref Expression
opabid2
Distinct variable group:   ,,

Proof of Theorem opabid2
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2951 . . . 4
2 vex 2951 . . . 4
3 opeq1 3976 . . . . 5
43eleq1d 2501 . . . 4
5 opeq2 3977 . . . . 5
65eleq1d 2501 . . . 4
71, 2, 4, 6opelopab 4468 . . 3
87gen2 1556 . 2
9 relopab 4993 . . 3
10 eqrel 4957 . . 3
119, 10mpan 652 . 2
128, 11mpbiri 225 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wal 1549   wceq 1652   wcel 1725  cop 3809  copab 4257   wrel 4875 This theorem is referenced by:  opabbi2dv  5014 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-opab 4259  df-xp 4876  df-rel 4877
 Copyright terms: Public domain W3C validator