MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabid2 Unicode version

Theorem opabid2 4815
Description: A relation expressed as an ordered pair abstraction. (Contributed by NM, 11-Dec-2006.)
Assertion
Ref Expression
opabid2  |-  ( Rel 
A  ->  { <. x ,  y >.  |  <. x ,  y >.  e.  A }  =  A )
Distinct variable group:    x, y, A

Proof of Theorem opabid2
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2791 . . . 4  |-  z  e. 
_V
2 vex 2791 . . . 4  |-  w  e. 
_V
3 opeq1 3796 . . . . 5  |-  ( x  =  z  ->  <. x ,  y >.  =  <. z ,  y >. )
43eleq1d 2349 . . . 4  |-  ( x  =  z  ->  ( <. x ,  y >.  e.  A  <->  <. z ,  y
>.  e.  A ) )
5 opeq2 3797 . . . . 5  |-  ( y  =  w  ->  <. z ,  y >.  =  <. z ,  w >. )
65eleq1d 2349 . . . 4  |-  ( y  =  w  ->  ( <. z ,  y >.  e.  A  <->  <. z ,  w >.  e.  A ) )
71, 2, 4, 6opelopab 4286 . . 3  |-  ( <.
z ,  w >.  e. 
{ <. x ,  y
>.  |  <. x ,  y >.  e.  A } 
<-> 
<. z ,  w >.  e.  A )
87gen2 1534 . 2  |-  A. z A. w ( <. z ,  w >.  e.  { <. x ,  y >.  |  <. x ,  y >.  e.  A } 
<-> 
<. z ,  w >.  e.  A )
9 relopab 4812 . . 3  |-  Rel  { <. x ,  y >.  |  <. x ,  y
>.  e.  A }
10 eqrel 4777 . . 3  |-  ( ( Rel  { <. x ,  y >.  |  <. x ,  y >.  e.  A }  /\  Rel  A )  ->  ( { <. x ,  y >.  |  <. x ,  y >.  e.  A }  =  A  <->  A. z A. w ( <. z ,  w >.  e.  { <. x ,  y >.  |  <. x ,  y >.  e.  A } 
<-> 
<. z ,  w >.  e.  A ) ) )
119, 10mpan 651 . 2  |-  ( Rel 
A  ->  ( { <. x ,  y >.  |  <. x ,  y
>.  e.  A }  =  A 
<-> 
A. z A. w
( <. z ,  w >.  e.  { <. x ,  y >.  |  <. x ,  y >.  e.  A } 
<-> 
<. z ,  w >.  e.  A ) ) )
128, 11mpbiri 224 1  |-  ( Rel 
A  ->  { <. x ,  y >.  |  <. x ,  y >.  e.  A }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1527    = wceq 1623    e. wcel 1684   <.cop 3643   {copab 4076   Rel wrel 4694
This theorem is referenced by:  opabbi2dv  4833  dmoprabss6  25035
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-opab 4078  df-xp 4695  df-rel 4696
  Copyright terms: Public domain W3C validator