MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabss Unicode version

Theorem opabss 4096
Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
opabss  |-  { <. x ,  y >.  |  x R y }  C_  R
Distinct variable groups:    x, R    y, R

Proof of Theorem opabss
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-opab 4094 . 2  |-  { <. x ,  y >.  |  x R y }  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  x R y ) }
2 df-br 4040 . . . . 5  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
3 eleq1 2356 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  R  <->  <. x ,  y
>.  e.  R ) )
43biimpar 471 . . . . 5  |-  ( ( z  =  <. x ,  y >.  /\  <. x ,  y >.  e.  R
)  ->  z  e.  R )
52, 4sylan2b 461 . . . 4  |-  ( ( z  =  <. x ,  y >.  /\  x R y )  -> 
z  e.  R )
65exlimivv 1625 . . 3  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  x R y )  -> 
z  e.  R )
76abssi 3261 . 2  |-  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  x R y ) }  C_  R
81, 7eqsstri 3221 1  |-  { <. x ,  y >.  |  x R y }  C_  R
Colors of variables: wff set class
Syntax hints:    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696   {cab 2282    C_ wss 3165   <.cop 3656   class class class wbr 4039   {copab 4092
This theorem is referenced by:  aceq3lem  7763  fullfunc  13796  fthfunc  13797  isfull  13800  isfth  13804
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-in 3172  df-ss 3179  df-br 4040  df-opab 4094
  Copyright terms: Public domain W3C validator