MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opabss Unicode version

Theorem opabss 4211
Description: The collection of ordered pairs in a class is a subclass of it. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
opabss  |-  { <. x ,  y >.  |  x R y }  C_  R
Distinct variable groups:    x, R    y, R

Proof of Theorem opabss
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-opab 4209 . 2  |-  { <. x ,  y >.  |  x R y }  =  { z  |  E. x E. y ( z  =  <. x ,  y
>.  /\  x R y ) }
2 df-br 4155 . . . . 5  |-  ( x R y  <->  <. x ,  y >.  e.  R
)
3 eleq1 2448 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( z  e.  R  <->  <. x ,  y
>.  e.  R ) )
43biimpar 472 . . . . 5  |-  ( ( z  =  <. x ,  y >.  /\  <. x ,  y >.  e.  R
)  ->  z  e.  R )
52, 4sylan2b 462 . . . 4  |-  ( ( z  =  <. x ,  y >.  /\  x R y )  -> 
z  e.  R )
65exlimivv 1642 . . 3  |-  ( E. x E. y ( z  =  <. x ,  y >.  /\  x R y )  -> 
z  e.  R )
76abssi 3362 . 2  |-  { z  |  E. x E. y ( z  = 
<. x ,  y >.  /\  x R y ) }  C_  R
81, 7eqsstri 3322 1  |-  { <. x ,  y >.  |  x R y }  C_  R
Colors of variables: wff set class
Syntax hints:    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1717   {cab 2374    C_ wss 3264   <.cop 3761   class class class wbr 4154   {copab 4207
This theorem is referenced by:  aceq3lem  7935  fullfunc  14031  fthfunc  14032  isfull  14035  isfth  14039
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-in 3271  df-ss 3278  df-br 4155  df-opab 4209
  Copyright terms: Public domain W3C validator