MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opbrop Unicode version

Theorem opbrop 4767
Description: Ordered pair membership in a relation. Special case. (Contributed by NM, 5-Aug-1995.)
Hypotheses
Ref Expression
opbrop.1  |-  ( ( ( z  =  A  /\  w  =  B )  /\  ( v  =  C  /\  u  =  D ) )  -> 
( ph  <->  ps ) )
opbrop.2  |-  R  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )
) }
Assertion
Ref Expression
opbrop  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >. R <. C ,  D >.  <->  ps ) )
Distinct variable groups:    x, y,
z, w, v, u, A    x, B, y, z, w, v, u   
x, C, y, z, w, v, u    x, D, y, z, w, v, u    x, S, y, z, w, v, u    ph, x, y    ps, z, w, v, u
Allowed substitution hints:    ph( z, w, v, u)    ps( x, y)    R( x, y, z, w, v, u)

Proof of Theorem opbrop
StepHypRef Expression
1 opex 4237 . . . 4  |-  <. A ,  B >.  e.  _V
2 opex 4237 . . . 4  |-  <. C ,  D >.  e.  _V
3 eleq1 2343 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  ( x  e.  ( S  X.  S
)  <->  <. A ,  B >.  e.  ( S  X.  S ) ) )
43anbi1d 685 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S
) )  <->  ( <. A ,  B >.  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) ) ) )
5 eqeq1 2289 . . . . . . . 8  |-  ( x  =  <. A ,  B >.  ->  ( x  = 
<. z ,  w >.  <->  <. A ,  B >.  =  <. z ,  w >. )
)
65anbi1d 685 . . . . . . 7  |-  ( x  =  <. A ,  B >.  ->  ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  (
<. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. ) ) )
76anbi1d 685 . . . . . 6  |-  ( x  =  <. A ,  B >.  ->  ( ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )  <->  ( ( <. A ,  B >.  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) ) )
874exbidv 1616 . . . . 5  |-  ( x  =  <. A ,  B >.  ->  ( E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )  <->  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) ) )
94, 8anbi12d 691 . . . 4  |-  ( x  =  <. A ,  B >.  ->  ( ( ( x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )
)  <->  ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) ) ) )
10 eleq1 2343 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  ( y  e.  ( S  X.  S
)  <->  <. C ,  D >.  e.  ( S  X.  S ) ) )
1110anbi2d 684 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  <->  ( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S ) ) ) )
12 eqeq1 2289 . . . . . . . 8  |-  ( y  =  <. C ,  D >.  ->  ( y  = 
<. v ,  u >.  <->  <. C ,  D >.  =  <. v ,  u >. )
)
1312anbi2d 684 . . . . . . 7  |-  ( y  =  <. C ,  D >.  ->  ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( <. A ,  B >.  =  <. z ,  w >.  /\  <. C ,  D >.  =  <. v ,  u >. )
) )
1413anbi1d 685 . . . . . 6  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) 
<->  ( ( <. A ,  B >.  =  <. z ,  w >.  /\  <. C ,  D >.  =  <. v ,  u >. )  /\  ph ) ) )
15144exbidv 1616 . . . . 5  |-  ( y  =  <. C ,  D >.  ->  ( E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) 
<->  E. z E. w E. v E. u ( ( <. A ,  B >.  =  <. z ,  w >.  /\  <. C ,  D >.  =  <. v ,  u >. )  /\  ph )
) )
1611, 15anbi12d 691 . . . 4  |-  ( y  =  <. C ,  D >.  ->  ( ( (
<. A ,  B >.  e.  ( S  X.  S
)  /\  y  e.  ( S  X.  S
) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph ) )  <->  ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  <. C ,  D >.  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph ) ) ) )
17 opbrop.2 . . . 4  |-  R  =  { <. x ,  y
>.  |  ( (
x  e.  ( S  X.  S )  /\  y  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ph )
) }
181, 2, 9, 16, 17brab 4287 . . 3  |-  ( <. A ,  B >. R
<. C ,  D >.  <->  (
( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph ) ) )
19 opbrop.1 . . . . 5  |-  ( ( ( z  =  A  /\  w  =  B )  /\  ( v  =  C  /\  u  =  D ) )  -> 
( ph  <->  ps ) )
2019copsex4g 4255 . . . 4  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph )  <->  ps )
)
2120anbi2d 684 . . 3  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  <. C ,  D >.  e.  ( S  X.  S ) )  /\  E. z E. w E. v E. u ( ( <. A ,  B >.  = 
<. z ,  w >.  /\ 
<. C ,  D >.  = 
<. v ,  u >. )  /\  ph ) )  <-> 
( ( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S
) )  /\  ps ) ) )
2218, 21syl5bb 248 . 2  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >. R <. C ,  D >.  <-> 
( ( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S
) )  /\  ps ) ) )
23 opelxpi 4721 . . . 4  |-  ( ( A  e.  S  /\  B  e.  S )  -> 
<. A ,  B >.  e.  ( S  X.  S
) )
24 opelxpi 4721 . . . 4  |-  ( ( C  e.  S  /\  D  e.  S )  -> 
<. C ,  D >.  e.  ( S  X.  S
) )
2523, 24anim12i 549 . . 3  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >.  e.  ( S  X.  S )  /\  <. C ,  D >.  e.  ( S  X.  S ) ) )
2625biantrurd 494 . 2  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( ps  <->  ( ( <. A ,  B >.  e.  ( S  X.  S
)  /\  <. C ,  D >.  e.  ( S  X.  S ) )  /\  ps ) ) )
2722, 26bitr4d 247 1  |-  ( ( ( A  e.  S  /\  B  e.  S
)  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( <. A ,  B >. R <. C ,  D >.  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   <.cop 3643   class class class wbr 4023   {copab 4076    X. cxp 4687
This theorem is referenced by:  ecopoveq  6759  ovec  6768
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695
  Copyright terms: Public domain W3C validator