MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelcn Unicode version

Theorem opelcn 8751
Description: Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
opelcn  |-  ( <. A ,  B >.  e.  CC  <->  ( A  e. 
R.  /\  B  e.  R. ) )

Proof of Theorem opelcn
StepHypRef Expression
1 df-c 8743 . . 3  |-  CC  =  ( R.  X.  R. )
21eleq2i 2347 . 2  |-  ( <. A ,  B >.  e.  CC  <->  <. A ,  B >.  e.  ( R.  X.  R. ) )
3 opelxp 4719 . 2  |-  ( <. A ,  B >.  e.  ( R.  X.  R. ) 
<->  ( A  e.  R.  /\  B  e.  R. )
)
42, 3bitri 240 1  |-  ( <. A ,  B >.  e.  CC  <->  ( A  e. 
R.  /\  B  e.  R. ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    e. wcel 1684   <.cop 3643    X. cxp 4687   R.cnr 8489   CCcc 8735
This theorem is referenced by:  axicn  8772
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-opab 4078  df-xp 4695  df-c 8743
  Copyright terms: Public domain W3C validator