MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelcnv Unicode version

Theorem opelcnv 4863
Description: Ordered-pair membership in converse. (Contributed by NM, 13-Aug-1995.)
Hypotheses
Ref Expression
opelcnv.1  |-  A  e. 
_V
opelcnv.2  |-  B  e. 
_V
Assertion
Ref Expression
opelcnv  |-  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R )

Proof of Theorem opelcnv
StepHypRef Expression
1 opelcnv.1 . 2  |-  A  e. 
_V
2 opelcnv.2 . 2  |-  B  e. 
_V
3 opelcnvg 4861 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R ) )
41, 2, 3mp2an 653 1  |-  ( <. A ,  B >.  e.  `' R  <->  <. B ,  A >.  e.  R )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    e. wcel 1684   _Vcvv 2788   <.cop 3643   `'ccnv 4688
This theorem is referenced by:  cnvopab  5083  cnv0  5084  cnvdif  5087  dfrel2  5124  cnvcnvsn  5150  cnvresima  5162  dfco2  5172  cnviin  5212  fcnvres  5418  cnvf1olem  6216  dmtpos  6246  dftpos4  6253  tpostpos  6254  brsdom2  6985  fsumcom2  12237  gsumcom2  15226  cnvco1  24117  cnvco2  24118  dualded  25783  cnvresimaOLD  26226
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-cnv 4697
  Copyright terms: Public domain W3C validator