Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelco Structured version   Unicode version

Theorem opelco 5046
 Description: Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
opelco.1
opelco.2
Assertion
Ref Expression
opelco
Distinct variable groups:   ,   ,   ,   ,

Proof of Theorem opelco
StepHypRef Expression
1 df-br 4215 . 2
2 opelco.1 . . 3
3 opelco.2 . . 3
42, 3brco 5045 . 2
51, 4bitr3i 244 1
 Colors of variables: wff set class Syntax hints:   wb 178   wa 360  wex 1551   wcel 1726  cvv 2958  cop 3819   class class class wbr 4214   ccom 4884 This theorem is referenced by:  dmcoss  5137  dmcosseq  5139  cotr  5248  coiun  5381  co02  5385  coi1  5387  coass  5390  fmptco  5903  dftpos4  6500  fmptcof2  24078  cnvco1  25385  cnvco2  25386  txpss3v  25725  dffun10  25761  tfrqfree  25798 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-br 4215  df-opab 4269  df-co 4889
 Copyright terms: Public domain W3C validator