MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeliunxp2 Structured version   Unicode version

Theorem opeliunxp2 5015
Description: Membership in a union of cross products. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypothesis
Ref Expression
opeliunxp2.1  |-  ( x  =  C  ->  B  =  E )
Assertion
Ref Expression
opeliunxp2  |-  ( <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
Distinct variable groups:    x, C    x, D    x, E    x, A
Allowed substitution hint:    B( x)

Proof of Theorem opeliunxp2
StepHypRef Expression
1 df-br 4215 . . 3  |-  ( C
U_ x  e.  A  ( { x }  X.  B ) D  <->  <. C ,  D >.  e.  U_ x  e.  A  ( {
x }  X.  B
) )
2 relxp 4985 . . . . . 6  |-  Rel  ( { x }  X.  B )
32rgenw 2775 . . . . 5  |-  A. x  e.  A  Rel  ( { x }  X.  B
)
4 reliun 4997 . . . . 5  |-  ( Rel  U_ x  e.  A  ( { x }  X.  B )  <->  A. x  e.  A  Rel  ( { x }  X.  B
) )
53, 4mpbir 202 . . . 4  |-  Rel  U_ x  e.  A  ( {
x }  X.  B
)
65brrelexi 4920 . . 3  |-  ( C
U_ x  e.  A  ( { x }  X.  B ) D  ->  C  e.  _V )
71, 6sylbir 206 . 2  |-  ( <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  ->  C  e.  _V )
8 elex 2966 . . 3  |-  ( C  e.  A  ->  C  e.  _V )
98adantr 453 . 2  |-  ( ( C  e.  A  /\  D  e.  E )  ->  C  e.  _V )
10 nfcv 2574 . . 3  |-  F/_ x C
11 nfiu1 4123 . . . . 5  |-  F/_ x U_ x  e.  A  ( { x }  X.  B )
1211nfel2 2586 . . . 4  |-  F/ x <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )
13 nfv 1630 . . . 4  |-  F/ x
( C  e.  A  /\  D  e.  E
)
1412, 13nfbi 1857 . . 3  |-  F/ x
( <. C ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
15 opeq1 3986 . . . . 5  |-  ( x  =  C  ->  <. x ,  D >.  =  <. C ,  D >. )
1615eleq1d 2504 . . . 4  |-  ( x  =  C  ->  ( <. x ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  <. C ,  D >.  e.  U_ x  e.  A  ( {
x }  X.  B
) ) )
17 eleq1 2498 . . . . 5  |-  ( x  =  C  ->  (
x  e.  A  <->  C  e.  A ) )
18 opeliunxp2.1 . . . . . 6  |-  ( x  =  C  ->  B  =  E )
1918eleq2d 2505 . . . . 5  |-  ( x  =  C  ->  ( D  e.  B  <->  D  e.  E ) )
2017, 19anbi12d 693 . . . 4  |-  ( x  =  C  ->  (
( x  e.  A  /\  D  e.  B
)  <->  ( C  e.  A  /\  D  e.  E ) ) )
2116, 20bibi12d 314 . . 3  |-  ( x  =  C  ->  (
( <. x ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( x  e.  A  /\  D  e.  B ) )  <->  ( <. C ,  D >.  e.  U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) ) ) )
22 opeliunxp 4931 . . 3  |-  ( <.
x ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( x  e.  A  /\  D  e.  B ) )
2310, 14, 21, 22vtoclgf 3012 . 2  |-  ( C  e.  _V  ->  ( <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) ) )
247, 9, 23pm5.21nii 344 1  |-  ( <. C ,  D >.  e. 
U_ x  e.  A  ( { x }  X.  B )  <->  ( C  e.  A  /\  D  e.  E ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   _Vcvv 2958   {csn 3816   <.cop 3819   U_ciun 4095   class class class wbr 4214    X. cxp 4878   Rel wrel 4885
This theorem is referenced by:  mpt2xopn0yelv  6466  mpt2xopxnop0  6468  eldmcoa  14222  dmdprd  15561  eldv  19787  perfdvf  19792  eltayl  20278  cvmliftlem1  24974  filnetlem3  26411
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-iun 4097  df-br 4215  df-opab 4269  df-xp 4886  df-rel 4887
  Copyright terms: Public domain W3C validator