Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopabaf Structured version   Unicode version

Theorem opelopabaf 4478
 Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4476 uses bound-variable hypotheses in place of distinct variable conditions." (Contributed by Mario Carneiro, 19-Dec-2013.) (Proof shortened by Mario Carneiro, 18-Nov-2016.)
Hypotheses
Ref Expression
opelopabaf.x
opelopabaf.y
opelopabaf.1
opelopabaf.2
opelopabaf.3
Assertion
Ref Expression
opelopabaf
Distinct variable groups:   ,,   ,,
Allowed substitution hints:   (,)   (,)

Proof of Theorem opelopabaf
StepHypRef Expression
1 opelopabsb 4465 . 2
2 opelopabaf.1 . . 3
3 opelopabaf.2 . . 3
4 opelopabaf.x . . . 4
5 opelopabaf.y . . . 4
6 nfv 1629 . . . 4
7 opelopabaf.3 . . . 4
84, 5, 6, 7sbc2iegf 3227 . . 3
92, 3, 8mp2an 654 . 2
101, 9bitri 241 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359  wnf 1553   wceq 1652   wcel 1725  cvv 2956  wsbc 3161  cop 3817  copab 4265 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-opab 4267
 Copyright terms: Public domain W3C validator