MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopabf Unicode version

Theorem opelopabf 4289
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 4286 uses bound-variable hypotheses in place of distinct variable conditions." (Contributed by NM, 19-Dec-2008.)
Hypotheses
Ref Expression
opelopabf.x  |-  F/ x ps
opelopabf.y  |-  F/ y ch
opelopabf.1  |-  A  e. 
_V
opelopabf.2  |-  B  e. 
_V
opelopabf.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
opelopabf.4  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
opelopabf  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  ch )
Distinct variable groups:    x, y, A    x, B, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    ch( x, y)

Proof of Theorem opelopabf
StepHypRef Expression
1 opelopabsb 4275 . 2  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  [. A  /  x ]. [. B  / 
y ]. ph )
2 opelopabf.1 . . 3  |-  A  e. 
_V
3 nfcv 2419 . . . . 5  |-  F/_ x B
4 opelopabf.x . . . . 5  |-  F/ x ps
53, 4nfsbc 3012 . . . 4  |-  F/ x [. B  /  y ]. ps
6 opelopabf.3 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
76sbcbidv 3045 . . . 4  |-  ( x  =  A  ->  ( [. B  /  y ]. ph  <->  [. B  /  y ]. ps ) )
85, 7sbciegf 3022 . . 3  |-  ( A  e.  _V  ->  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. B  /  y ]. ps ) )
92, 8ax-mp 8 . 2  |-  ( [. A  /  x ]. [. B  /  y ]. ph  <->  [. B  / 
y ]. ps )
10 opelopabf.2 . . 3  |-  B  e. 
_V
11 opelopabf.y . . . 4  |-  F/ y ch
12 opelopabf.4 . . . 4  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
1311, 12sbciegf 3022 . . 3  |-  ( B  e.  _V  ->  ( [. B  /  y ]. ps  <->  ch ) )
1410, 13ax-mp 8 . 2  |-  ( [. B  /  y ]. ps  <->  ch )
151, 9, 143bitri 262 1  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   F/wnf 1531    = wceq 1623    e. wcel 1684   _Vcvv 2788   [.wsbc 2991   <.cop 3643   {copab 4076
This theorem is referenced by:  pofun  4330  fmptco  5691  fmptcof2  23229
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-opab 4078
  Copyright terms: Public domain W3C validator