Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopabg Unicode version

Theorem opelopabg 4283
 Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. (Contributed by NM, 28-May-1995.) (Revised by Mario Carneiro, 19-Dec-2013.)
Hypotheses
Ref Expression
opelopabg.1
opelopabg.2
Assertion
Ref Expression
opelopabg
Distinct variable groups:   ,,   ,,   ,,
Allowed substitution hints:   (,)   (,)   (,)   (,)

Proof of Theorem opelopabg
StepHypRef Expression
1 opelopabg.1 . . 3
2 opelopabg.2 . . 3
31, 2sylan9bb 680 . 2
43opelopabga 4278 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 176   wa 358   wceq 1623   wcel 1684  cop 3643  copab 4076 This theorem is referenced by:  opelopab  4286  fvopab3g  5598  fvopab3ig  5599  ov  5967  ovg  5986  eltopspOLD  16656  istpsOLD  16658  iscom2  21079  isdivrngo  21098  isvclem  21133  adj1  22513  adjeq  22515  linedegen  24766  islatalg  25183  cmppar3  25974  opelopab3  26373  dihpN  31526 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-opab 4078
 Copyright terms: Public domain W3C validator