MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopabt Structured version   Unicode version

Theorem opelopabt 4459
Description: Closed theorem form of opelopab 4468. (Contributed by NM, 19-Feb-2013.)
Assertion
Ref Expression
opelopabt  |-  ( ( A. x A. y
( x  =  A  ->  ( ph  <->  ps )
)  /\  A. x A. y ( y  =  B  ->  ( ps  <->  ch ) )  /\  ( A  e.  V  /\  B  e.  W )
)  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph }  <->  ch )
)
Distinct variable groups:    x, y, A    x, B, y    ch, x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    V( x, y)    W( x, y)

Proof of Theorem opelopabt
StepHypRef Expression
1 elopab 4454 . 2  |-  ( <. A ,  B >.  e. 
{ <. x ,  y
>.  |  ph }  <->  E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) )
2 19.26-2 1604 . . . . 5  |-  ( A. x A. y ( ( x  =  A  -> 
( ph  <->  ps ) )  /\  ( y  =  B  ->  ( ps  <->  ch )
) )  <->  ( A. x A. y ( x  =  A  ->  ( ph 
<->  ps ) )  /\  A. x A. y ( y  =  B  -> 
( ps  <->  ch )
) ) )
3 prth 555 . . . . . . 7  |-  ( ( ( x  =  A  ->  ( ph  <->  ps )
)  /\  ( y  =  B  ->  ( ps  <->  ch ) ) )  -> 
( ( x  =  A  /\  y  =  B )  ->  (
( ph  <->  ps )  /\  ( ps 
<->  ch ) ) ) )
4 bitr 690 . . . . . . 7  |-  ( ( ( ph  <->  ps )  /\  ( ps  <->  ch )
)  ->  ( ph  <->  ch ) )
53, 4syl6 31 . . . . . 6  |-  ( ( ( x  =  A  ->  ( ph  <->  ps )
)  /\  ( y  =  B  ->  ( ps  <->  ch ) ) )  -> 
( ( x  =  A  /\  y  =  B )  ->  ( ph 
<->  ch ) ) )
652alimi 1569 . . . . 5  |-  ( A. x A. y ( ( x  =  A  -> 
( ph  <->  ps ) )  /\  ( y  =  B  ->  ( ps  <->  ch )
) )  ->  A. x A. y ( ( x  =  A  /\  y  =  B )  ->  ( ph 
<->  ch ) ) )
72, 6sylbir 205 . . . 4  |-  ( ( A. x A. y
( x  =  A  ->  ( ph  <->  ps )
)  /\  A. x A. y ( y  =  B  ->  ( ps  <->  ch ) ) )  ->  A. x A. y ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ch ) ) )
8 copsex2t 4435 . . . 4  |-  ( ( A. x A. y
( ( x  =  A  /\  y  =  B )  ->  ( ph 
<->  ch ) )  /\  ( A  e.  V  /\  B  e.  W
) )  ->  ( E. x E. y (
<. A ,  B >.  = 
<. x ,  y >.  /\  ph )  <->  ch )
)
97, 8sylan 458 . . 3  |-  ( ( ( A. x A. y ( x  =  A  ->  ( ph  <->  ps ) )  /\  A. x A. y ( y  =  B  ->  ( ps 
<->  ch ) ) )  /\  ( A  e.  V  /\  B  e.  W ) )  -> 
( E. x E. y ( <. A ,  B >.  =  <. x ,  y >.  /\  ph ) 
<->  ch ) )
1093impa 1148 . 2  |-  ( ( A. x A. y
( x  =  A  ->  ( ph  <->  ps )
)  /\  A. x A. y ( y  =  B  ->  ( ps  <->  ch ) )  /\  ( A  e.  V  /\  B  e.  W )
)  ->  ( E. x E. y ( <. A ,  B >.  = 
<. x ,  y >.  /\  ph )  <->  ch )
)
111, 10syl5bb 249 1  |-  ( ( A. x A. y
( x  =  A  ->  ( ph  <->  ps )
)  /\  A. x A. y ( y  =  B  ->  ( ps  <->  ch ) )  /\  ( A  e.  V  /\  B  e.  W )
)  ->  ( <. A ,  B >.  e.  { <. x ,  y >.  |  ph }  <->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1549   E.wex 1550    = wceq 1652    e. wcel 1725   <.cop 3809   {copab 4257
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-opab 4259
  Copyright terms: Public domain W3C validator