MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeluu Unicode version

Theorem opeluu 4542
Description: Each member of an ordered pair belongs to the union of the union of a class to which the ordered pair belongs. Lemma 3D of [Enderton] p. 41. (Contributed by NM, 31-Mar-1995.) (Revised by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
opeluu.1  |-  A  e. 
_V
opeluu.2  |-  B  e. 
_V
Assertion
Ref Expression
opeluu  |-  ( <. A ,  B >.  e.  C  ->  ( A  e.  U. U. C  /\  B  e.  U. U. C
) )

Proof of Theorem opeluu
StepHypRef Expression
1 opeluu.1 . . . 4  |-  A  e. 
_V
21prid1 3747 . . 3  |-  A  e. 
{ A ,  B }
3 opeluu.2 . . . . 5  |-  B  e. 
_V
41, 3opi2 4257 . . . 4  |-  { A ,  B }  e.  <. A ,  B >.
5 elunii 3848 . . . 4  |-  ( ( { A ,  B }  e.  <. A ,  B >.  /\  <. A ,  B >.  e.  C )  ->  { A ,  B }  e.  U. C
)
64, 5mpan 651 . . 3  |-  ( <. A ,  B >.  e.  C  ->  { A ,  B }  e.  U. C )
7 elunii 3848 . . 3  |-  ( ( A  e.  { A ,  B }  /\  { A ,  B }  e.  U. C )  ->  A  e.  U. U. C
)
82, 6, 7sylancr 644 . 2  |-  ( <. A ,  B >.  e.  C  ->  A  e.  U.
U. C )
93prid2 3748 . . 3  |-  B  e. 
{ A ,  B }
10 elunii 3848 . . 3  |-  ( ( B  e.  { A ,  B }  /\  { A ,  B }  e.  U. C )  ->  B  e.  U. U. C
)
119, 6, 10sylancr 644 . 2  |-  ( <. A ,  B >.  e.  C  ->  B  e.  U.
U. C )
128, 11jca 518 1  |-  ( <. A ,  B >.  e.  C  ->  ( A  e.  U. U. C  /\  B  e.  U. U. C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1696   _Vcvv 2801   {cpr 3654   <.cop 3656   U.cuni 3843
This theorem is referenced by:  asymref  5075  asymref2  5076  wrdexb  11465  dfdir2  25394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844
  Copyright terms: Public domain W3C validator