MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelvv Unicode version

Theorem opelvv 4735
Description: Ordered pair membership in the universal class of ordered pairs. (Contributed by NM, 22-Aug-2013.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opelvv.1  |-  A  e. 
_V
opelvv.2  |-  B  e. 
_V
Assertion
Ref Expression
opelvv  |-  <. A ,  B >.  e.  ( _V 
X.  _V )

Proof of Theorem opelvv
StepHypRef Expression
1 opelvv.1 . 2  |-  A  e. 
_V
2 opelvv.2 . 2  |-  B  e. 
_V
3 opelxpi 4721 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  e.  ( _V  X.  _V ) )
41, 2, 3mp2an 653 1  |-  <. A ,  B >.  e.  ( _V 
X.  _V )
Colors of variables: wff set class
Syntax hints:    e. wcel 1684   _Vcvv 2788   <.cop 3643    X. cxp 4687
This theorem is referenced by:  relsnop  4791  relopabi  4811  1st2ndb  6160  eqop2  6163  evlfcl  13996  brtxp  24420  brpprod  24425  brsset  24429  brcart  24471  brcup  24478  brcap  24479  stcat  25044  eloi  25086
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-opab 4078  df-xp 4695
  Copyright terms: Public domain W3C validator