MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelxp1 Structured version   Unicode version

Theorem opelxp1 4911
Description: The first member of an ordered pair of classes in a cross product belongs to first cross product argument. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opelxp1  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  ->  A  e.  C )

Proof of Theorem opelxp1
StepHypRef Expression
1 opelxp 4908 . 2  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  <->  ( A  e.  C  /\  B  e.  D ) )
21simplbi 447 1  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  ->  A  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1725   <.cop 3817    X. cxp 4876
This theorem is referenced by:  otelxp1  4913  dff3  5882  ressnop0  5913  swoord1  6934  swoord2  6935  canthp1lem2  8528  txcmplem1  17673  txlm  17680  dvbsss  19789  vcoprnelem  22057  nvvcop  22073  nvvop  22088  linedegen  26077  opelopab3  26418
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-opab 4267  df-xp 4884
  Copyright terms: Public domain W3C validator