MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelxp2 Unicode version

Theorem opelxp2 4826
Description: The second member of an ordered pair of classes in a cross product belongs to second cross product argument. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opelxp2  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  ->  B  e.  D )

Proof of Theorem opelxp2
StepHypRef Expression
1 opelxp 4822 . 2  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  <->  ( A  e.  C  /\  B  e.  D ) )
21simprbi 450 1  |-  ( <. A ,  B >.  e.  ( C  X.  D
)  ->  B  e.  D )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1715   <.cop 3732    X. cxp 4790
This theorem is referenced by:  dff4  5785  eceqoveq  6906  isfin4-3  8088  axdc4lem  8228  canthp1lem2  8422  txcmplem1  17552  txlm  17559  nvex  21480  pprodss4v  25165  brcgr  25270
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pr 4316
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-opab 4180  df-xp 4798
  Copyright terms: Public domain W3C validator