MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeq1i Structured version   Unicode version

Theorem opeq1i 3989
Description: Equality inference for ordered pairs. (Contributed by NM, 16-Dec-2006.)
Hypothesis
Ref Expression
opeq1i.1  |-  A  =  B
Assertion
Ref Expression
opeq1i  |-  <. A ,  C >.  =  <. B ,  C >.

Proof of Theorem opeq1i
StepHypRef Expression
1 opeq1i.1 . 2  |-  A  =  B
2 opeq1 3986 . 2  |-  ( A  =  B  ->  <. A ,  C >.  =  <. B ,  C >. )
31, 2ax-mp 5 1  |-  <. A ,  C >.  =  <. B ,  C >.
Colors of variables: wff set class
Syntax hints:    = wceq 1653   <.cop 3819
This theorem is referenced by:  axi2m1  9039  strlemor1  13561  grpbasex  13577  grpplusgx  13578  indistpsx  17079  mapfzcons  26786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825
  Copyright terms: Public domain W3C validator