MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeqex Unicode version

Theorem opeqex 4273
Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.)
Assertion
Ref Expression
opeqex  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( ( A  e. 
_V  /\  B  e.  _V )  <->  ( C  e. 
_V  /\  D  e.  _V ) ) )

Proof of Theorem opeqex
StepHypRef Expression
1 neeq1 2467 . 2  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( <. A ,  B >.  =/=  (/)  <->  <. C ,  D >.  =/=  (/) ) )
2 opnz 4258 . 2  |-  ( <. A ,  B >.  =/=  (/) 
<->  ( A  e.  _V  /\  B  e.  _V )
)
3 opnz 4258 . 2  |-  ( <. C ,  D >.  =/=  (/) 
<->  ( C  e.  _V  /\  D  e.  _V )
)
41, 2, 33bitr3g 278 1  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( ( A  e. 
_V  /\  B  e.  _V )  <->  ( C  e. 
_V  /\  D  e.  _V ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   _Vcvv 2801   (/)c0 3468   <.cop 3656
This theorem is referenced by:  oteqex2  4274  oteqex  4275  epelg  4322
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662
  Copyright terms: Public domain W3C validator