MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opi1 Unicode version

Theorem opi1 4322
Description: One of the two elements in an ordered pair. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opi1.1  |-  A  e. 
_V
opi1.2  |-  B  e. 
_V
Assertion
Ref Expression
opi1  |-  { A }  e.  <. A ,  B >.

Proof of Theorem opi1
StepHypRef Expression
1 snex 4297 . . 3  |-  { A }  e.  _V
21prid1 3810 . 2  |-  { A }  e.  { { A } ,  { A ,  B } }
3 opi1.1 . . 3  |-  A  e. 
_V
4 opi1.2 . . 3  |-  B  e. 
_V
53, 4dfop 3876 . 2  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
62, 5eleqtrri 2431 1  |-  { A }  e.  <. A ,  B >.
Colors of variables: wff set class
Syntax hints:    e. wcel 1710   _Vcvv 2864   {csn 3716   {cpr 3717   <.cop 3719
This theorem is referenced by:  opth1  4326  opth  4327
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pr 4295
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725
  Copyright terms: Public domain W3C validator