MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opidon2 Unicode version

Theorem opidon2 20991
Description: An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.)
Hypothesis
Ref Expression
opidon2.1  |-  X  =  ran  G
Assertion
Ref Expression
opidon2  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  G : ( X  X.  X )
-onto-> X )

Proof of Theorem opidon2
StepHypRef Expression
1 eqid 2283 . . 3  |-  dom  dom  G  =  dom  dom  G
21opidon 20989 . 2  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  G : ( dom  dom  G  X.  dom  dom  G ) -onto-> dom 
dom  G )
3 opidon2.1 . . . 4  |-  X  =  ran  G
4 forn 5454 . . . 4  |-  ( G : ( dom  dom  G  X.  dom  dom  G
) -onto-> dom  dom  G  ->  ran 
G  =  dom  dom  G )
53, 4syl5req 2328 . . 3  |-  ( G : ( dom  dom  G  X.  dom  dom  G
) -onto-> dom  dom  G  ->  dom 
dom  G  =  X
)
6 xpeq12 4708 . . . . . . 7  |-  ( ( dom  dom  G  =  X  /\  dom  dom  G  =  X )  ->  ( dom  dom  G  X.  dom  dom 
G )  =  ( X  X.  X ) )
76anidms 626 . . . . . 6  |-  ( dom 
dom  G  =  X  ->  ( dom  dom  G  X.  dom  dom  G )  =  ( X  X.  X ) )
8 foeq2 5448 . . . . . 6  |-  ( ( dom  dom  G  X.  dom  dom  G )  =  ( X  X.  X
)  ->  ( G : ( dom  dom  G  X.  dom  dom  G
) -onto-> dom  dom  G  <->  G :
( X  X.  X
) -onto-> dom  dom  G )
)
97, 8syl 15 . . . . 5  |-  ( dom 
dom  G  =  X  ->  ( G : ( dom  dom  G  X.  dom  dom  G ) -onto-> dom 
dom  G  <->  G : ( X  X.  X ) -onto-> dom 
dom  G ) )
10 foeq3 5449 . . . . 5  |-  ( dom 
dom  G  =  X  ->  ( G : ( X  X.  X )
-onto->
dom  dom  G  <->  G :
( X  X.  X
) -onto-> X ) )
119, 10bitrd 244 . . . 4  |-  ( dom 
dom  G  =  X  ->  ( G : ( dom  dom  G  X.  dom  dom  G ) -onto-> dom 
dom  G  <->  G : ( X  X.  X ) -onto-> X ) )
1211biimpd 198 . . 3  |-  ( dom 
dom  G  =  X  ->  ( G : ( dom  dom  G  X.  dom  dom  G ) -onto-> dom 
dom  G  ->  G :
( X  X.  X
) -onto-> X ) )
135, 12mpcom 32 . 2  |-  ( G : ( dom  dom  G  X.  dom  dom  G
) -onto-> dom  dom  G  ->  G : ( X  X.  X ) -onto-> X )
142, 13syl 15 1  |-  ( G  e.  ( Magma  i^i  ExId  )  ->  G : ( X  X.  X )
-onto-> X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1623    e. wcel 1684    i^i cin 3151    X. cxp 4687   dom cdm 4689   ran crn 4690   -onto->wfo 5253    ExId cexid 20981   Magmacmagm 20985
This theorem is referenced by:  exidreslem  26567
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-ov 5861  df-exid 20982  df-mgm 20986
  Copyright terms: Public domain W3C validator