Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ople0 Unicode version

Theorem ople0 29446
Description: An element less than or equal to zero equals zero. (chle0 22136 analog.) (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
op0le.b  |-  B  =  ( Base `  K
)
op0le.l  |-  .<_  =  ( le `  K )
op0le.z  |-  .0.  =  ( 0. `  K )
Assertion
Ref Expression
ople0  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( X  .<_  .0.  <->  X  =  .0.  ) )

Proof of Theorem ople0
StepHypRef Expression
1 op0le.b . . . 4  |-  B  =  ( Base `  K
)
2 op0le.l . . . 4  |-  .<_  =  ( le `  K )
3 op0le.z . . . 4  |-  .0.  =  ( 0. `  K )
41, 2, 3op0le 29445 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  .0.  .<_  X )
54biantrud 493 . 2  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( X  .<_  .0.  <->  ( X  .<_  .0.  /\  .0.  .<_  X ) ) )
6 opposet 29441 . . . 4  |-  ( K  e.  OP  ->  K  e.  Poset )
76adantr 451 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  K  e.  Poset )
8 simpr 447 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  X  e.  B )
91, 3op0cl 29443 . . . 4  |-  ( K  e.  OP  ->  .0.  e.  B )
109adantr 451 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  .0.  e.  B )
111, 2posasymb 14185 . . 3  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  .0.  e.  B )  ->  (
( X  .<_  .0.  /\  .0.  .<_  X )  <->  X  =  .0.  ) )
127, 8, 10, 11syl3anc 1182 . 2  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( ( X  .<_  .0. 
/\  .0.  .<_  X )  <-> 
X  =  .0.  )
)
135, 12bitrd 244 1  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( X  .<_  .0.  <->  X  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1642    e. wcel 1710   class class class wbr 4104   ` cfv 5337   Basecbs 13245   lecple 13312   Posetcpo 14173   0.cp0 14242   OPcops 29431
This theorem is referenced by:  lub0N  29448  opoc1  29461  atlatmstc  29578  cvrat4  29701  lhpocnle  30274  cdleme22b  30599  tendoid  31031  tendoex  31233
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4212  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3909  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-id 4391  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-undef 6385  df-riota 6391  df-poset 14179  df-glb 14208  df-p0 14244  df-oposet 29435
  Copyright terms: Public domain W3C validator