Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ople0 Unicode version

Theorem ople0 29377
Description: An element less than or equal to zero equals zero. (chle0 22022 analog.) (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
op0le.b  |-  B  =  ( Base `  K
)
op0le.l  |-  .<_  =  ( le `  K )
op0le.z  |-  .0.  =  ( 0. `  K )
Assertion
Ref Expression
ople0  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( X  .<_  .0.  <->  X  =  .0.  ) )

Proof of Theorem ople0
StepHypRef Expression
1 op0le.b . . . 4  |-  B  =  ( Base `  K
)
2 op0le.l . . . 4  |-  .<_  =  ( le `  K )
3 op0le.z . . . 4  |-  .0.  =  ( 0. `  K )
41, 2, 3op0le 29376 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  .0.  .<_  X )
54biantrud 493 . 2  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( X  .<_  .0.  <->  ( X  .<_  .0.  /\  .0.  .<_  X ) ) )
6 opposet 29372 . . . 4  |-  ( K  e.  OP  ->  K  e.  Poset )
76adantr 451 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  K  e.  Poset )
8 simpr 447 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  X  e.  B )
91, 3op0cl 29374 . . . 4  |-  ( K  e.  OP  ->  .0.  e.  B )
109adantr 451 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  .0.  e.  B )
111, 2posasymb 14086 . . 3  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  .0.  e.  B )  ->  (
( X  .<_  .0.  /\  .0.  .<_  X )  <->  X  =  .0.  ) )
127, 8, 10, 11syl3anc 1182 . 2  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( ( X  .<_  .0. 
/\  .0.  .<_  X )  <-> 
X  =  .0.  )
)
135, 12bitrd 244 1  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  ( X  .<_  .0.  <->  X  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255   Basecbs 13148   lecple 13215   Posetcpo 14074   0.cp0 14143   OPcops 29362
This theorem is referenced by:  lub0N  29379  opoc1  29392  atlatmstc  29509  cvrat4  29632  lhpocnle  30205  cdleme22b  30530  tendoid  30962  tendoex  31164
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-undef 6298  df-riota 6304  df-poset 14080  df-glb 14109  df-p0 14145  df-oposet 29366
  Copyright terms: Public domain W3C validator