Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opltcon1b Unicode version

Theorem opltcon1b 29692
Description: Contraposition law for strict ordering in orthoposets. (chpsscon1 22963 analog.) (Contributed by NM, 5-Nov-2011.)
Hypotheses
Ref Expression
opltcon3.b  |-  B  =  ( Base `  K
)
opltcon3.s  |-  .<  =  ( lt `  K )
opltcon3.o  |-  ._|_  =  ( oc `  K )
Assertion
Ref Expression
opltcon1b  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  .<  Y  <->  (  ._|_  `  Y )  .<  X ) )

Proof of Theorem opltcon1b
StepHypRef Expression
1 opltcon3.b . . . . 5  |-  B  =  ( Base `  K
)
2 opltcon3.o . . . . 5  |-  ._|_  =  ( oc `  K )
31, 2opoccl 29681 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  ._|_  `  X )  e.  B )
433adant3 977 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  X )  e.  B )
5 opltcon3.s . . . 4  |-  .<  =  ( lt `  K )
61, 5, 2opltcon3b 29691 . . 3  |-  ( ( K  e.  OP  /\  (  ._|_  `  X )  e.  B  /\  Y  e.  B )  ->  (
(  ._|_  `  X )  .<  Y  <->  (  ._|_  `  Y
)  .<  (  ._|_  `  (  ._|_  `  X ) ) ) )
74, 6syld3an2 1231 . 2  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  .<  Y  <->  (  ._|_  `  Y )  .<  (  ._|_  `  (  ._|_  `  X
) ) ) )
81, 2opococ 29682 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  ._|_  `  (  ._|_  `  X ) )  =  X )
983adant3 977 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  (  ._|_  `  X ) )  =  X )
109breq2d 4188 . 2  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  Y
)  .<  (  ._|_  `  (  ._|_  `  X ) )  <-> 
(  ._|_  `  Y )  .<  X ) )
117, 10bitrd 245 1  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  X
)  .<  Y  <->  (  ._|_  `  Y )  .<  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ w3a 936    = wceq 1649    e. wcel 1721   class class class wbr 4176   ` cfv 5417   Basecbs 13428   occoc 13496   ltcplt 14357   OPcops 29659
This theorem is referenced by:  cvrcon3b  29764
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pr 4367
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-ral 2675  df-rex 2676  df-rab 2679  df-v 2922  df-sbc 3126  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-iota 5381  df-fun 5419  df-fv 5425  df-ov 6047  df-poset 14362  df-plt 14374  df-oposet 29663
  Copyright terms: Public domain W3C validator