Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opltcon2b Unicode version

Theorem opltcon2b 29396
Description: Contraposition law for strict ordering in orthoposets. (chsscon2 22081 analog.) (Contributed by NM, 5-Nov-2011.)
Hypotheses
Ref Expression
opltcon3.b  |-  B  =  ( Base `  K
)
opltcon3.s  |-  .<  =  ( lt `  K )
opltcon3.o  |-  ._|_  =  ( oc `  K )
Assertion
Ref Expression
opltcon2b  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  (  ._|_  `  Y )  <->  Y  .<  ( 
._|_  `  X ) ) )

Proof of Theorem opltcon2b
StepHypRef Expression
1 opltcon3.b . . . . 5  |-  B  =  ( Base `  K
)
2 opltcon3.o . . . . 5  |-  ._|_  =  ( oc `  K )
31, 2opoccl 29384 . . . 4  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
433adant2 974 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
5 opltcon3.s . . . 4  |-  .<  =  ( lt `  K )
61, 5, 2opltcon3b 29394 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  (  ._|_  `  Y )  e.  B )  ->  ( X  .<  (  ._|_  `  Y
)  <->  (  ._|_  `  (  ._|_  `  Y ) ) 
.<  (  ._|_  `  X
) ) )
74, 6syld3an3 1227 . 2  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  (  ._|_  `  Y )  <->  (  ._|_  `  (  ._|_  `  Y ) )  .<  (  ._|_  `  X ) ) )
81, 2opococ 29385 . . . 4  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  (  ._|_  `  Y ) )  =  Y )
983adant2 974 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  (  ._|_  `  Y ) )  =  Y )
109breq1d 4033 . 2  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  (  ._|_  `  Y ) ) 
.<  (  ._|_  `  X
)  <->  Y  .<  (  ._|_  `  X ) ) )
117, 10bitrd 244 1  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  (  ._|_  `  Y )  <->  Y  .<  ( 
._|_  `  X ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255   Basecbs 13148   occoc 13216   ltcplt 14075   OPcops 29362
This theorem is referenced by:  cvrcon3b  29467
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-poset 14080  df-plt 14092  df-oposet 29366
  Copyright terms: Public domain W3C validator