Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opltcon3b Unicode version

Theorem opltcon3b 29394
Description: Contraposition law for strict ordering in orthoposets. (chpsscon3 22082 analog.) (Contributed by NM, 4-Nov-2011.)
Hypotheses
Ref Expression
opltcon3.b  |-  B  =  ( Base `  K
)
opltcon3.s  |-  .<  =  ( lt `  K )
opltcon3.o  |-  ._|_  =  ( oc `  K )
Assertion
Ref Expression
opltcon3b  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  <->  (  ._|_  `  Y )  .<  (  ._|_  `  X ) ) )

Proof of Theorem opltcon3b
StepHypRef Expression
1 opltcon3.b . . . 4  |-  B  =  ( Base `  K
)
2 eqid 2283 . . . 4  |-  ( le
`  K )  =  ( le `  K
)
3 opltcon3.o . . . 4  |-  ._|_  =  ( oc `  K )
41, 2, 3oplecon3b 29390 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( X ( le
`  K ) Y  <-> 
(  ._|_  `  Y )
( le `  K
) (  ._|_  `  X
) ) )
51, 2, 3oplecon3b 29390 . . . . 5  |-  ( ( K  e.  OP  /\  Y  e.  B  /\  X  e.  B )  ->  ( Y ( le
`  K ) X  <-> 
(  ._|_  `  X )
( le `  K
) (  ._|_  `  Y
) ) )
653com23 1157 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( Y ( le
`  K ) X  <-> 
(  ._|_  `  X )
( le `  K
) (  ._|_  `  Y
) ) )
76notbid 285 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( -.  Y ( le `  K ) X  <->  -.  (  ._|_  `  X ) ( le
`  K ) ( 
._|_  `  Y ) ) )
84, 7anbi12d 691 . 2  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( ( X ( le `  K ) Y  /\  -.  Y
( le `  K
) X )  <->  ( (  ._|_  `  Y ) ( le `  K ) (  ._|_  `  X )  /\  -.  (  ._|_  `  X ) ( le
`  K ) ( 
._|_  `  Y ) ) ) )
9 opposet 29372 . . 3  |-  ( K  e.  OP  ->  K  e.  Poset )
10 opltcon3.s . . . 4  |-  .<  =  ( lt `  K )
111, 2, 10pltval3 14101 . . 3  |-  ( ( K  e.  Poset  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  <->  ( X
( le `  K
) Y  /\  -.  Y ( le `  K ) X ) ) )
129, 11syl3an1 1215 . 2  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  <->  ( X
( le `  K
) Y  /\  -.  Y ( le `  K ) X ) ) )
1393ad2ant1 976 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  K  e.  Poset )
141, 3opoccl 29384 . . . 4  |-  ( ( K  e.  OP  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
15143adant2 974 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  Y )  e.  B )
161, 3opoccl 29384 . . . 4  |-  ( ( K  e.  OP  /\  X  e.  B )  ->  (  ._|_  `  X )  e.  B )
17163adant3 975 . . 3  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  (  ._|_  `  X )  e.  B )
181, 2, 10pltval3 14101 . . 3  |-  ( ( K  e.  Poset  /\  (  ._|_  `  Y )  e.  B  /\  (  ._|_  `  X )  e.  B
)  ->  ( (  ._|_  `  Y )  .< 
(  ._|_  `  X )  <->  ( (  ._|_  `  Y ) ( le `  K
) (  ._|_  `  X
)  /\  -.  (  ._|_  `  X ) ( le `  K ) (  ._|_  `  Y ) ) ) )
1913, 15, 17, 18syl3anc 1182 . 2  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( (  ._|_  `  Y
)  .<  (  ._|_  `  X
)  <->  ( (  ._|_  `  Y ) ( le
`  K ) ( 
._|_  `  X )  /\  -.  (  ._|_  `  X
) ( le `  K ) (  ._|_  `  Y ) ) ) )
208, 12, 193bitr4d 276 1  |-  ( ( K  e.  OP  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .<  Y  <->  (  ._|_  `  Y )  .<  (  ._|_  `  X ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   class class class wbr 4023   ` cfv 5255   Basecbs 13148   lecple 13215   occoc 13216   Posetcpo 14074   ltcplt 14075   OPcops 29362
This theorem is referenced by:  opltcon1b  29395  opltcon2b  29396  cvrcon3b  29467  1cvratex  29662  lhprelat3N  30229
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-poset 14080  df-plt 14092  df-oposet 29366
  Copyright terms: Public domain W3C validator