MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opncldf3 Unicode version

Theorem opncldf3 16823
Description: The values of the converse/inverse of the open-closed bijection. (Contributed by Jeff Hankins, 27-Aug-2009.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
opncldf.1  |-  X  = 
U. J
opncldf.2  |-  F  =  ( u  e.  J  |->  ( X  \  u
) )
Assertion
Ref Expression
opncldf3  |-  ( B  e.  ( Clsd `  J
)  ->  ( `' F `  B )  =  ( X  \  B ) )
Distinct variable groups:    u, J    u, X
Allowed substitution hints:    B( u)    F( u)

Proof of Theorem opncldf3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cldrcl 16763 . . . 4  |-  ( B  e.  ( Clsd `  J
)  ->  J  e.  Top )
2 opncldf.1 . . . . . 6  |-  X  = 
U. J
3 opncldf.2 . . . . . 6  |-  F  =  ( u  e.  J  |->  ( X  \  u
) )
42, 3opncldf1 16821 . . . . 5  |-  ( J  e.  Top  ->  ( F : J -1-1-onto-> ( Clsd `  J
)  /\  `' F  =  ( x  e.  ( Clsd `  J
)  |->  ( X  \  x ) ) ) )
54simprd 449 . . . 4  |-  ( J  e.  Top  ->  `' F  =  ( x  e.  ( Clsd `  J
)  |->  ( X  \  x ) ) )
61, 5syl 15 . . 3  |-  ( B  e.  ( Clsd `  J
)  ->  `' F  =  ( x  e.  ( Clsd `  J
)  |->  ( X  \  x ) ) )
76fveq1d 5527 . 2  |-  ( B  e.  ( Clsd `  J
)  ->  ( `' F `  B )  =  ( ( x  e.  ( Clsd `  J
)  |->  ( X  \  x ) ) `  B ) )
82cldopn 16768 . . 3  |-  ( B  e.  ( Clsd `  J
)  ->  ( X  \  B )  e.  J
)
9 difeq2 3288 . . . 4  |-  ( x  =  B  ->  ( X  \  x )  =  ( X  \  B
) )
10 eqid 2283 . . . 4  |-  ( x  e.  ( Clsd `  J
)  |->  ( X  \  x ) )  =  ( x  e.  (
Clsd `  J )  |->  ( X  \  x
) )
119, 10fvmptg 5600 . . 3  |-  ( ( B  e.  ( Clsd `  J )  /\  ( X  \  B )  e.  J )  ->  (
( x  e.  (
Clsd `  J )  |->  ( X  \  x
) ) `  B
)  =  ( X 
\  B ) )
128, 11mpdan 649 . 2  |-  ( B  e.  ( Clsd `  J
)  ->  ( (
x  e.  ( Clsd `  J )  |->  ( X 
\  x ) ) `
 B )  =  ( X  \  B
) )
137, 12eqtrd 2315 1  |-  ( B  e.  ( Clsd `  J
)  ->  ( `' F `  B )  =  ( X  \  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684    \ cdif 3149   U.cuni 3827    e. cmpt 4077   `'ccnv 4688   -1-1-onto->wf1o 5254   ` cfv 5255   Topctop 16631   Clsdccld 16753
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-top 16636  df-cld 16756
  Copyright terms: Public domain W3C validator