MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnreen Unicode version

Theorem opnreen 18352
Description: Every nonempty open set is uncountable. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
opnreen  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  A  =/=  (/) )  ->  A  ~~  ~P NN )

Proof of Theorem opnreen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 8844 . . . . 5  |-  RR  e.  _V
2 elssuni 3871 . . . . . 6  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  C_  U. ( topGen `
 ran  (,) )
)
3 uniretop 18287 . . . . . 6  |-  RR  =  U. ( topGen `  ran  (,) )
42, 3syl6sseqr 3238 . . . . 5  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  C_  RR )
5 ssdomg 6923 . . . . 5  |-  ( RR  e.  _V  ->  ( A  C_  RR  ->  A  ~<_  RR ) )
61, 4, 5mpsyl 59 . . . 4  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  ~<_  RR )
7 rpnnen 12521 . . . 4  |-  RR  ~~  ~P NN
8 domentr 6936 . . . 4  |-  ( ( A  ~<_  RR  /\  RR  ~~  ~P NN )  ->  A  ~<_  ~P NN )
96, 7, 8sylancl 643 . . 3  |-  ( A  e.  ( topGen `  ran  (,) )  ->  A  ~<_  ~P NN )
109adantr 451 . 2  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  A  =/=  (/) )  ->  A  ~<_  ~P NN )
11 n0 3477 . . . 4  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
12 eqid 2296 . . . . . . . . . 10  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
13 eqid 2296 . . . . . . . . . 10  |-  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )
1412, 13tgioo 18318 . . . . . . . . 9  |-  ( topGen ` 
ran  (,) )  =  (
MetOpen `  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) )
1514eleq2i 2360 . . . . . . . 8  |-  ( A  e.  ( topGen `  ran  (,) )  <->  A  e.  ( MetOpen
`  ( ( abs 
o.  -  )  |`  ( RR  X.  RR ) ) ) )
1612rexmet 18313 . . . . . . . . 9  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( * Met `  RR )
1713mopni2 18055 . . . . . . . . 9  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( * Met `  RR )  /\  A  e.  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) )  /\  x  e.  A )  ->  E. y  e.  RR+  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) y )  C_  A )
1816, 17mp3an1 1264 . . . . . . . 8  |-  ( ( A  e.  ( MetOpen `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) )  /\  x  e.  A )  ->  E. y  e.  RR+  ( x (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )
1915, 18sylanb 458 . . . . . . 7  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  x  e.  A )  ->  E. y  e.  RR+  ( x (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )
204sselda 3193 . . . . . . . . . . . 12  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  x  e.  A )  ->  x  e.  RR )
21 eqid 2296 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ~P NN  |->  ( y  e.  NN  |->  if ( y  e.  x ,  ( ( 1  /  3 ) ^
y ) ,  0 ) ) )  =  ( x  e.  ~P NN  |->  ( y  e.  NN  |->  if ( y  e.  x ,  ( ( 1  /  3
) ^ y ) ,  0 ) ) )
2221rpnnen2 12520 . . . . . . . . . . . . . . 15  |-  ~P NN  ~<_  ( 0 [,] 1
)
23 rphalfcl 10394 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  RR+  ->  ( y  /  2 )  e.  RR+ )
2423rpred 10406 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  RR+  ->  ( y  /  2 )  e.  RR )
25 resubcl 9127 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  ( y  /  2
)  e.  RR )  ->  ( x  -  ( y  /  2
) )  e.  RR )
2624, 25sylan2 460 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  (
y  /  2 ) )  e.  RR )
27 readdcl 8836 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  ( y  /  2
)  e.  RR )  ->  ( x  +  ( y  /  2
) )  e.  RR )
2824, 27sylan2 460 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  +  ( y  /  2 ) )  e.  RR )
29 simpl 443 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  ->  x  e.  RR )
30 ltsubrp 10401 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  ( y  /  2
)  e.  RR+ )  ->  ( x  -  (
y  /  2 ) )  <  x )
3123, 30sylan2 460 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  (
y  /  2 ) )  <  x )
32 ltaddrp 10402 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  ( y  /  2
)  e.  RR+ )  ->  x  <  ( x  +  ( y  / 
2 ) ) )
3323, 32sylan2 460 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  ->  x  <  ( x  +  ( y  /  2
) ) )
3426, 29, 28, 31, 33lttrd 8993 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  (
y  /  2 ) )  <  ( x  +  ( y  / 
2 ) ) )
35 iccen 10795 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  -  (
y  /  2 ) )  e.  RR  /\  ( x  +  (
y  /  2 ) )  e.  RR  /\  ( x  -  (
y  /  2 ) )  <  ( x  +  ( y  / 
2 ) ) )  ->  ( 0 [,] 1 )  ~~  (
( x  -  (
y  /  2 ) ) [,] ( x  +  ( y  / 
2 ) ) ) )
3626, 28, 34, 35syl3anc 1182 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( 0 [,] 1
)  ~~  ( (
x  -  ( y  /  2 ) ) [,] ( x  +  ( y  /  2
) ) ) )
37 domentr 6936 . . . . . . . . . . . . . . 15  |-  ( ( ~P NN  ~<_  ( 0 [,] 1 )  /\  ( 0 [,] 1
)  ~~  ( (
x  -  ( y  /  2 ) ) [,] ( x  +  ( y  /  2
) ) ) )  ->  ~P NN  ~<_  ( ( x  -  ( y  /  2 ) ) [,] ( x  +  ( y  /  2
) ) ) )
3822, 36, 37sylancr 644 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  ->  ~P NN  ~<_  ( ( x  -  ( y  / 
2 ) ) [,] ( x  +  ( y  /  2 ) ) ) )
39 ovex 5899 . . . . . . . . . . . . . . 15  |-  ( ( x  -  y ) (,) ( x  +  y ) )  e. 
_V
40 rpre 10376 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  RR+  ->  y  e.  RR )
41 resubcl 9127 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  -  y
)  e.  RR )
4240, 41sylan2 460 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  y
)  e.  RR )
4342rexrd 8897 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  y
)  e.  RR* )
44 readdcl 8836 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  y )  e.  RR )
4540, 44sylan2 460 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  +  y )  e.  RR )
4645rexrd 8897 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  +  y )  e.  RR* )
4729recnd 8877 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  ->  x  e.  CC )
4824adantl 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( y  /  2
)  e.  RR )
4948recnd 8877 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( y  /  2
)  e.  CC )
5047, 49, 49subsub4d 9204 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  -  ( y  /  2
) )  -  (
y  /  2 ) )  =  ( x  -  ( ( y  /  2 )  +  ( y  /  2
) ) ) )
5140adantl 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
y  e.  RR )
5251recnd 8877 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
y  e.  CC )
53522halvesd 9973 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( y  / 
2 )  +  ( y  /  2 ) )  =  y )
5453oveq2d 5890 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  (
( y  /  2
)  +  ( y  /  2 ) ) )  =  ( x  -  y ) )
5550, 54eqtrd 2328 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  -  ( y  /  2
) )  -  (
y  /  2 ) )  =  ( x  -  y ) )
5623adantl 452 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( y  /  2
)  e.  RR+ )
57 ltsubrp 10401 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  -  (
y  /  2 ) )  e.  RR  /\  ( y  /  2
)  e.  RR+ )  ->  ( ( x  -  ( y  /  2
) )  -  (
y  /  2 ) )  <  ( x  -  ( y  / 
2 ) ) )
5826, 56, 57syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  -  ( y  /  2
) )  -  (
y  /  2 ) )  <  ( x  -  ( y  / 
2 ) ) )
5955, 58eqbrtrrd 4061 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  -  y
)  <  ( x  -  ( y  / 
2 ) ) )
60 ltaddrp 10402 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( x  +  ( y  /  2 ) )  e.  RR  /\  ( y  /  2
)  e.  RR+ )  ->  ( x  +  ( y  /  2 ) )  <  ( ( x  +  ( y  /  2 ) )  +  ( y  / 
2 ) ) )
6128, 56, 60syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  +  ( y  /  2 ) )  <  ( ( x  +  ( y  /  2 ) )  +  ( y  / 
2 ) ) )
6247, 49, 49addassd 8873 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  +  ( y  /  2
) )  +  ( y  /  2 ) )  =  ( x  +  ( ( y  /  2 )  +  ( y  /  2
) ) ) )
6353oveq2d 5890 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  +  ( ( y  /  2
)  +  ( y  /  2 ) ) )  =  ( x  +  y ) )
6462, 63eqtrd 2328 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  +  ( y  /  2
) )  +  ( y  /  2 ) )  =  ( x  +  y ) )
6561, 64breqtrd 4063 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x  +  ( y  /  2 ) )  <  ( x  +  y ) )
66 iccssioo 10735 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( x  -  y )  e.  RR*  /\  ( x  +  y )  e.  RR* )  /\  ( ( x  -  y )  <  (
x  -  ( y  /  2 ) )  /\  ( x  +  ( y  /  2
) )  <  (
x  +  y ) ) )  ->  (
( x  -  (
y  /  2 ) ) [,] ( x  +  ( y  / 
2 ) ) ) 
C_  ( ( x  -  y ) (,) ( x  +  y ) ) )
6743, 46, 59, 65, 66syl22anc 1183 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  -  ( y  /  2
) ) [,] (
x  +  ( y  /  2 ) ) )  C_  ( (
x  -  y ) (,) ( x  +  y ) ) )
68 ssdomg 6923 . . . . . . . . . . . . . . 15  |-  ( ( ( x  -  y
) (,) ( x  +  y ) )  e.  _V  ->  (
( ( x  -  ( y  /  2
) ) [,] (
x  +  ( y  /  2 ) ) )  C_  ( (
x  -  y ) (,) ( x  +  y ) )  -> 
( ( x  -  ( y  /  2
) ) [,] (
x  +  ( y  /  2 ) ) )  ~<_  ( ( x  -  y ) (,) ( x  +  y ) ) ) )
6939, 67, 68mpsyl 59 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( ( x  -  ( y  /  2
) ) [,] (
x  +  ( y  /  2 ) ) )  ~<_  ( ( x  -  y ) (,) ( x  +  y ) ) )
70 domtr 6930 . . . . . . . . . . . . . 14  |-  ( ( ~P NN  ~<_  ( ( x  -  ( y  /  2 ) ) [,] ( x  +  ( y  /  2
) ) )  /\  ( ( x  -  ( y  /  2
) ) [,] (
x  +  ( y  /  2 ) ) )  ~<_  ( ( x  -  y ) (,) ( x  +  y ) ) )  ->  ~P NN  ~<_  ( ( x  -  y ) (,) ( x  +  y ) ) )
7138, 69, 70syl2anc 642 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  ->  ~P NN  ~<_  ( ( x  -  y ) (,) ( x  +  y ) ) )
7212bl2ioo 18314 . . . . . . . . . . . . . 14  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) y )  =  ( ( x  -  y ) (,) (
x  +  y ) ) )
7340, 72sylan2 460 . . . . . . . . . . . . 13  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  -> 
( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) y )  =  ( ( x  -  y ) (,) (
x  +  y ) ) )
7471, 73breqtrrd 4065 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  y  e.  RR+ )  ->  ~P NN  ~<_  ( x (
ball `  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y ) )
7520, 74sylan 457 . . . . . . . . . . 11  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  ->  ~P NN  ~<_  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) y ) )
7675adantr 451 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  /\  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )  ->  ~P NN  ~<_  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y ) )
77 simplll 734 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  /\  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )  ->  A  e.  ( topGen ` 
ran  (,) ) )
78 simpr 447 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  /\  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )  ->  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) y )  C_  A )
79 ssdomg 6923 . . . . . . . . . . 11  |-  ( A  e.  ( topGen `  ran  (,) )  ->  ( (
x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A  ->  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  ~<_  A ) )
8077, 78, 79sylc 56 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  /\  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )  ->  ( x ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) y )  ~<_  A )
81 domtr 6930 . . . . . . . . . 10  |-  ( ( ~P NN  ~<_  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  /\  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  ~<_  A )  ->  ~P NN  ~<_  A )
8276, 80, 81syl2anc 642 . . . . . . . . 9  |-  ( ( ( ( A  e.  ( topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  /\  ( x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A )  ->  ~P NN  ~<_  A )
8382ex 423 . . . . . . . 8  |-  ( ( ( A  e.  (
topGen `  ran  (,) )  /\  x  e.  A
)  /\  y  e.  RR+ )  ->  ( (
x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A  ->  ~P NN  ~<_  A ) )
8483rexlimdva 2680 . . . . . . 7  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  x  e.  A )  ->  ( E. y  e.  RR+  (
x ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) y )  C_  A  ->  ~P NN  ~<_  A ) )
8519, 84mpd 14 . . . . . 6  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  x  e.  A )  ->  ~P NN 
~<_  A )
8685ex 423 . . . . 5  |-  ( A  e.  ( topGen `  ran  (,) )  ->  ( x  e.  A  ->  ~P NN  ~<_  A ) )
8786exlimdv 1626 . . . 4  |-  ( A  e.  ( topGen `  ran  (,) )  ->  ( E. x  x  e.  A  ->  ~P NN  ~<_  A ) )
8811, 87syl5bi 208 . . 3  |-  ( A  e.  ( topGen `  ran  (,) )  ->  ( A  =/=  (/)  ->  ~P NN  ~<_  A ) )
8988imp 418 . 2  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  A  =/=  (/) )  ->  ~P NN 
~<_  A )
90 sbth 6997 . 2  |-  ( ( A  ~<_  ~P NN  /\  ~P NN 
~<_  A )  ->  A  ~~  ~P NN )
9110, 89, 90syl2anc 642 1  |-  ( ( A  e.  ( topGen ` 
ran  (,) )  /\  A  =/=  (/) )  ->  A  ~~  ~P NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   _Vcvv 2801    C_ wss 3165   (/)c0 3468   ifcif 3578   ~Pcpw 3638   U.cuni 3843   class class class wbr 4039    e. cmpt 4093    X. cxp 4703   ran crn 4706    |` cres 4707    o. ccom 4709   ` cfv 5271  (class class class)co 5874    ~~ cen 6876    ~<_ cdom 6877   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756   RR*cxr 8882    < clt 8883    - cmin 9053    / cdiv 9439   NNcn 9762   2c2 9811   3c3 9812   RR+crp 10370   (,)cioo 10672   [,]cicc 10675   ^cexp 11120   abscabs 11735   topGenctg 13358   * Metcxmt 16385   ballcbl 16387   MetOpencmopn 16388
This theorem is referenced by:  rectbntr0  18353
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-topgen 13360  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-top 16652  df-bases 16654  df-topon 16655
  Copyright terms: Public domain W3C validator