MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnz Unicode version

Theorem opnz 4242
Description: An ordered pair is nonempty iff the arguments are sets. (Contributed by NM, 24-Jan-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opnz  |-  ( <. A ,  B >.  =/=  (/) 
<->  ( A  e.  _V  /\  B  e.  _V )
)

Proof of Theorem opnz
StepHypRef Expression
1 opprc 3817 . . 3  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  (/) )
21necon1ai 2488 . 2  |-  ( <. A ,  B >.  =/=  (/)  ->  ( A  e. 
_V  /\  B  e.  _V ) )
3 dfopg 3794 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  { { A } ,  { A ,  B } } )
4 snex 4216 . . . . 5  |-  { A }  e.  _V
54prnz 3745 . . . 4  |-  { { A } ,  { A ,  B } }  =/=  (/)
65a1i 10 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { { A } ,  { A ,  B } }  =/=  (/) )
73, 6eqnetrd 2464 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =/=  (/) )
82, 7impbii 180 1  |-  ( <. A ,  B >.  =/=  (/) 
<->  ( A  e.  _V  /\  B  e.  _V )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    e. wcel 1684    =/= wne 2446   _Vcvv 2788   (/)c0 3455   {csn 3640   {cpr 3641   <.cop 3643
This theorem is referenced by:  opnzi  4243  opeqex  4257  opelopabsb  4275
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649
  Copyright terms: Public domain W3C validator