Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opnzi Structured version   Unicode version

Theorem opnzi 4435
 Description: An ordered pair is nonempty if the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opth1.1
opth1.2
Assertion
Ref Expression
opnzi

Proof of Theorem opnzi
StepHypRef Expression
1 opth1.1 . 2
2 opth1.2 . 2
3 opnz 4434 . 2
41, 2, 3mpbir2an 888 1
 Colors of variables: wff set class Syntax hints:   wcel 1726   wne 2601  cvv 2958  c0 3630  cop 3819 This theorem is referenced by:  opelopabsb  4467  0nelxp  4908  unixp0  5405  0neqopab  6121 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825
 Copyright terms: Public domain W3C validator