Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opoc0 Unicode version

Theorem opoc0 30015
Description: Orthocomplement of orthoposet zero. (Contributed by NM, 24-Jan-2012.)
Hypotheses
Ref Expression
opoc1.z  |-  .0.  =  ( 0. `  K )
opoc1.u  |-  .1.  =  ( 1. `  K )
opoc1.o  |-  ._|_  =  ( oc `  K )
Assertion
Ref Expression
opoc0  |-  ( K  e.  OP  ->  (  ._|_  `  .0.  )  =  .1.  )

Proof of Theorem opoc0
StepHypRef Expression
1 opoc1.z . . 3  |-  .0.  =  ( 0. `  K )
2 opoc1.u . . 3  |-  .1.  =  ( 1. `  K )
3 opoc1.o . . 3  |-  ._|_  =  ( oc `  K )
41, 2, 3opoc1 30014 . 2  |-  ( K  e.  OP  ->  (  ._|_  `  .1.  )  =  .0.  )
5 eqid 2296 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
65, 2op1cl 29997 . . 3  |-  ( K  e.  OP  ->  .1.  e.  ( Base `  K
) )
75, 1op0cl 29996 . . 3  |-  ( K  e.  OP  ->  .0.  e.  ( Base `  K
) )
85, 3opcon1b 30010 . . 3  |-  ( ( K  e.  OP  /\  .1.  e.  ( Base `  K
)  /\  .0.  e.  ( Base `  K )
)  ->  ( (  ._|_  `  .1.  )  =  .0.  <->  (  ._|_  `  .0.  )  =  .1.  )
)
96, 7, 8mpd3an23 1279 . 2  |-  ( K  e.  OP  ->  (
(  ._|_  `  .1.  )  =  .0.  <->  (  ._|_  `  .0.  )  =  .1.  )
)
104, 9mpbid 201 1  |-  ( K  e.  OP  ->  (  ._|_  `  .0.  )  =  .1.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632    e. wcel 1696   ` cfv 5271   Basecbs 13164   occoc 13232   0.cp0 14159   1.cp1 14160   OPcops 29984
This theorem is referenced by:  1cvrjat  30286  doch0  32170
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-undef 6314  df-riota 6320  df-poset 14096  df-lub 14124  df-glb 14125  df-p0 14161  df-p1 14162  df-oposet 29988
  Copyright terms: Public domain W3C validator