MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppglem Unicode version

Theorem oppglem 15109
Description: Lemma for oppgbas 15110. (Contributed by Stefan O'Rear, 26-Aug-2015.)
Hypotheses
Ref Expression
oppgbas.1  |-  O  =  (oppg
`  R )
oppglem.2  |-  E  = Slot 
N
oppglem.3  |-  N  e.  NN
oppglem.4  |-  N  =/=  2
Assertion
Ref Expression
oppglem  |-  ( E `
 R )  =  ( E `  O
)

Proof of Theorem oppglem
StepHypRef Expression
1 oppglem.2 . . . 4  |-  E  = Slot 
N
2 oppglem.3 . . . 4  |-  N  e.  NN
31, 2ndxid 13453 . . 3  |-  E  = Slot  ( E `  ndx )
4 oppglem.4 . . . 4  |-  N  =/=  2
51, 2ndxarg 13452 . . . . 5  |-  ( E `
 ndx )  =  N
6 plusgndx 13526 . . . . 5  |-  ( +g  ` 
ndx )  =  2
75, 6neeq12i 2587 . . . 4  |-  ( ( E `  ndx )  =/=  ( +g  `  ndx ) 
<->  N  =/=  2 )
84, 7mpbir 201 . . 3  |-  ( E `
 ndx )  =/=  ( +g  `  ndx )
93, 8setsnid 13472 . 2  |-  ( E `
 R )  =  ( E `  ( R sSet  <. ( +g  `  ndx ) , tpos  ( +g  `  R
) >. ) )
10 eqid 2412 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
11 oppgbas.1 . . . 4  |-  O  =  (oppg
`  R )
1210, 11oppgval 15106 . . 3  |-  O  =  ( R sSet  <. ( +g  `  ndx ) , tpos  ( +g  `  R
) >. )
1312fveq2i 5698 . 2  |-  ( E `
 O )  =  ( E `  ( R sSet  <. ( +g  `  ndx ) , tpos  ( +g  `  R
) >. ) )
149, 13eqtr4i 2435 1  |-  ( E `
 R )  =  ( E `  O
)
Colors of variables: wff set class
Syntax hints:    = wceq 1649    e. wcel 1721    =/= wne 2575   <.cop 3785   ` cfv 5421  (class class class)co 6048  tpos ctpos 6445   NNcn 9964   2c2 10013   ndxcnx 13429   sSet csts 13430  Slot cslot 13431   +g cplusg 13492  oppgcoppg 15104
This theorem is referenced by:  oppgbas  15110  oppgtset  15111
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-i2m1 9022  ax-1ne0 9023  ax-rrecex 9026  ax-cnre 9027
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-tpos 6446  df-recs 6600  df-rdg 6635  df-nn 9965  df-2 10022  df-ndx 13435  df-slot 13436  df-sets 13438  df-plusg 13505  df-oppg 15105
  Copyright terms: Public domain W3C validator