MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprc Structured version   Unicode version

Theorem opprc 4007
Description: Expansion of an ordered pair when either member is a proper class. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opprc  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  (/) )

Proof of Theorem opprc
StepHypRef Expression
1 dfopif 3983 . 2  |-  <. A ,  B >.  =  if ( ( A  e.  _V  /\  B  e.  _V ) ,  { { A } ,  { A ,  B } } ,  (/) )
2 iffalse 3748 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  if ( ( A  e.  _V  /\  B  e.  _V ) ,  { { A } ,  { A ,  B } } ,  (/) )  =  (/) )
31, 2syl5eq 2482 1  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 360    = wceq 1653    e. wcel 1726   _Vcvv 2958   (/)c0 3630   ifcif 3741   {csn 3816   {cpr 3817   <.cop 3819
This theorem is referenced by:  opprc1  4008  opprc2  4009  oprcl  4010  opnz  4435  opswap  5359  brabv  6123  brtpos  6491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-v 2960  df-dif 3325  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-op 3825
  Copyright terms: Public domain W3C validator