Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprc1 Structured version   Unicode version

Theorem opprc1 4006
 Description: Expansion of an ordered pair when the first member is a proper class. See also opprc 4005. (Contributed by NM, 10-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opprc1

Proof of Theorem opprc1
StepHypRef Expression
1 simpl 444 . . 3
21con3i 129 . 2
3 opprc 4005 . 2
42, 3syl 16 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 359   wceq 1652   wcel 1725  cvv 2956  c0 3628  cop 3817 This theorem is referenced by:  brprcneu  5721  eu2ndop1stv  27956 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-dif 3323  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-op 3823
 Copyright terms: Public domain W3C validator