MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprunit Unicode version

Theorem opprunit 15459
Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
opprunit.1  |-  U  =  (Unit `  R )
opprunit.2  |-  S  =  (oppr
`  R )
Assertion
Ref Expression
opprunit  |-  U  =  (Unit `  S )

Proof of Theorem opprunit
Dummy variables  y  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprunit.2 . . . . . . . . . . 11  |-  S  =  (oppr
`  R )
2 eqid 2296 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
31, 2opprbas 15427 . . . . . . . . . 10  |-  ( Base `  R )  =  (
Base `  S )
4 eqid 2296 . . . . . . . . . 10  |-  ( .r
`  S )  =  ( .r `  S
)
5 eqid 2296 . . . . . . . . . 10  |-  (oppr `  S
)  =  (oppr `  S
)
6 eqid 2296 . . . . . . . . . 10  |-  ( .r
`  (oppr
`  S ) )  =  ( .r `  (oppr `  S ) )
73, 4, 5, 6opprmul 15424 . . . . . . . . 9  |-  ( y ( .r `  (oppr `  S
) ) x )  =  ( x ( .r `  S ) y )
8 eqid 2296 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
92, 8, 1, 4opprmul 15424 . . . . . . . . 9  |-  ( x ( .r `  S
) y )  =  ( y ( .r
`  R ) x )
107, 9eqtr2i 2317 . . . . . . . 8  |-  ( y ( .r `  R
) x )  =  ( y ( .r
`  (oppr
`  S ) ) x )
1110eqeq1i 2303 . . . . . . 7  |-  ( ( y ( .r `  R ) x )  =  ( 1r `  R )  <->  ( y
( .r `  (oppr `  S
) ) x )  =  ( 1r `  R ) )
1211rexbii 2581 . . . . . 6  |-  ( E. y  e.  ( Base `  R ) ( y ( .r `  R
) x )  =  ( 1r `  R
)  <->  E. y  e.  (
Base `  R )
( y ( .r
`  (oppr
`  S ) ) x )  =  ( 1r `  R ) )
1312anbi2i 675 . . . . 5  |-  ( ( x  e.  ( Base `  R )  /\  E. y  e.  ( Base `  R ) ( y ( .r `  R
) x )  =  ( 1r `  R
) )  <->  ( x  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  (oppr `  S
) ) x )  =  ( 1r `  R ) ) )
14 eqid 2296 . . . . . 6  |-  ( ||r `  R
)  =  ( ||r `  R
)
152, 14, 8dvdsr 15444 . . . . 5  |-  ( x ( ||r `
 R ) ( 1r `  R )  <-> 
( x  e.  (
Base `  R )  /\  E. y  e.  (
Base `  R )
( y ( .r
`  R ) x )  =  ( 1r
`  R ) ) )
165, 3opprbas 15427 . . . . . 6  |-  ( Base `  R )  =  (
Base `  (oppr
`  S ) )
17 eqid 2296 . . . . . 6  |-  ( ||r `  (oppr `  S
) )  =  (
||r `  (oppr
`  S ) )
1816, 17, 6dvdsr 15444 . . . . 5  |-  ( x ( ||r `
 (oppr
`  S ) ) ( 1r `  R
)  <->  ( x  e.  ( Base `  R
)  /\  E. y  e.  ( Base `  R
) ( y ( .r `  (oppr `  S
) ) x )  =  ( 1r `  R ) ) )
1913, 15, 183bitr4i 268 . . . 4  |-  ( x ( ||r `
 R ) ( 1r `  R )  <-> 
x ( ||r `
 (oppr
`  S ) ) ( 1r `  R
) )
2019anbi2ci 677 . . 3  |-  ( ( x ( ||r `
 R ) ( 1r `  R )  /\  x ( ||r `  S
) ( 1r `  R ) )  <->  ( x
( ||r `
 S ) ( 1r `  R )  /\  x ( ||r `  (oppr `  S
) ) ( 1r
`  R ) ) )
21 opprunit.1 . . . 4  |-  U  =  (Unit `  R )
22 eqid 2296 . . . 4  |-  ( 1r
`  R )  =  ( 1r `  R
)
23 eqid 2296 . . . 4  |-  ( ||r `  S
)  =  ( ||r `  S
)
2421, 22, 14, 1, 23isunit 15455 . . 3  |-  ( x  e.  U  <->  ( x
( ||r `
 R ) ( 1r `  R )  /\  x ( ||r `  S
) ( 1r `  R ) ) )
25 eqid 2296 . . . 4  |-  (Unit `  S )  =  (Unit `  S )
261, 22oppr1 15432 . . . 4  |-  ( 1r
`  R )  =  ( 1r `  S
)
2725, 26, 23, 5, 17isunit 15455 . . 3  |-  ( x  e.  (Unit `  S
)  <->  ( x (
||r `  S ) ( 1r
`  R )  /\  x ( ||r `
 (oppr
`  S ) ) ( 1r `  R
) ) )
2820, 24, 273bitr4i 268 . 2  |-  ( x  e.  U  <->  x  e.  (Unit `  S ) )
2928eqriv 2293 1  |-  U  =  (Unit `  S )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1632    e. wcel 1696   E.wrex 2557   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   Basecbs 13164   .rcmulr 13225   1rcur 15355  opprcoppr 15420   ||rcdsr 15436  Unitcui 15437
This theorem is referenced by:  opprirred  15500  irredlmul  15506  opprdrng  15552  ply1divalg2  19540
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-tpos 6250  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-3 9821  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-plusg 13237  df-mulr 13238  df-0g 13420  df-mgp 15342  df-ur 15358  df-oppr 15421  df-dvdsr 15439  df-unit 15440
  Copyright terms: Public domain W3C validator