Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opprunit Structured version   Unicode version

Theorem opprunit 15766
 Description: Being a unit is a symmetric property, so it transfers to the opposite ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
opprunit.1 Unit
opprunit.2 oppr
Assertion
Ref Expression
opprunit Unit

Proof of Theorem opprunit
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opprunit.2 . . . . . . . . . . 11 oppr
2 eqid 2436 . . . . . . . . . . 11
31, 2opprbas 15734 . . . . . . . . . 10
4 eqid 2436 . . . . . . . . . 10
5 eqid 2436 . . . . . . . . . 10 oppr oppr
6 eqid 2436 . . . . . . . . . 10 oppr oppr
73, 4, 5, 6opprmul 15731 . . . . . . . . 9 oppr
8 eqid 2436 . . . . . . . . . 10
92, 8, 1, 4opprmul 15731 . . . . . . . . 9
107, 9eqtr2i 2457 . . . . . . . 8 oppr
1110eqeq1i 2443 . . . . . . 7 oppr
1211rexbii 2730 . . . . . 6 oppr
1312anbi2i 676 . . . . 5 oppr
14 eqid 2436 . . . . . 6 r r
152, 14, 8dvdsr 15751 . . . . 5 r
165, 3opprbas 15734 . . . . . 6 oppr
17 eqid 2436 . . . . . 6 roppr roppr
1816, 17, 6dvdsr 15751 . . . . 5 roppr oppr
1913, 15, 183bitr4i 269 . . . 4 r roppr
2019anbi2ci 678 . . 3 r r r roppr
21 opprunit.1 . . . 4 Unit
22 eqid 2436 . . . 4
23 eqid 2436 . . . 4 r r
2421, 22, 14, 1, 23isunit 15762 . . 3 r r
25 eqid 2436 . . . 4 Unit Unit
261, 22oppr1 15739 . . . 4
2725, 26, 23, 5, 17isunit 15762 . . 3 Unit r roppr
2820, 24, 273bitr4i 269 . 2 Unit
2928eqriv 2433 1 Unit
 Colors of variables: wff set class Syntax hints:   wa 359   wceq 1652   wcel 1725  wrex 2706   class class class wbr 4212  cfv 5454  (class class class)co 6081  cbs 13469  cmulr 13530  cur 15662  opprcoppr 15727  rcdsr 15743  Unitcui 15744 This theorem is referenced by:  opprirred  15807  irredlmul  15813  opprdrng  15859  ply1divalg2  20061 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-tpos 6479  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-3 10059  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-plusg 13542  df-mulr 13543  df-0g 13727  df-mgp 15649  df-ur 15665  df-oppr 15728  df-dvdsr 15746  df-unit 15747
 Copyright terms: Public domain W3C validator