MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabbidv Unicode version

Theorem oprabbidv 5918
Description: Equivalent wff's yield equal operation class abstractions (deduction rule). (Contributed by NM, 21-Feb-2004.)
Hypothesis
Ref Expression
oprabbidv.1  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
oprabbidv  |-  ( ph  ->  { <. <. x ,  y
>. ,  z >.  |  ps }  =  { <. <. x ,  y
>. ,  z >.  |  ch } )
Distinct variable groups:    x, z, ph    y, z, ph
Allowed substitution hints:    ps( x, y, z)    ch( x, y, z)

Proof of Theorem oprabbidv
StepHypRef Expression
1 nfv 1609 . 2  |-  F/ x ph
2 nfv 1609 . 2  |-  F/ y
ph
3 nfv 1609 . 2  |-  F/ z
ph
4 oprabbidv.1 . 2  |-  ( ph  ->  ( ps  <->  ch )
)
51, 2, 3, 4oprabbid 5917 1  |-  ( ph  ->  { <. <. x ,  y
>. ,  z >.  |  ps }  =  { <. <. x ,  y
>. ,  z >.  |  ch } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632   {coprab 5875
This theorem is referenced by:  oprabbii  5919  mpt2eq123dva  5925  mpt2eq3dva  5928  resoprab2  5957  erovlem  6770  prismorcsetlem  26015  prismorcset  26017  morcatset1  26018  domcatfun  26028  codcatfun  26037  isrocatset  26060
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-oprab 5878
  Copyright terms: Public domain W3C validator