MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabex3 Unicode version

Theorem oprabex3 5962
Description: Existence of an operation class abstraction (special case). (Contributed by NM, 19-Oct-2004.)
Hypotheses
Ref Expression
oprabex3.1  |-  H  e. 
_V
oprabex3.2  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( H  X.  H
)  /\  y  e.  ( H  X.  H
) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  R
) ) }
Assertion
Ref Expression
oprabex3  |-  F  e. 
_V
Distinct variable groups:    x, y,
z, w, v, u, f, H    x, R, y, z
Allowed substitution hints:    R( w, v, u, f)    F( x, y, z, w, v, u, f)

Proof of Theorem oprabex3
StepHypRef Expression
1 oprabex3.1 . . 3  |-  H  e. 
_V
21, 1xpex 4801 . 2  |-  ( H  X.  H )  e. 
_V
3 moeq 2941 . . . . . 6  |-  E* z 
z  =  R
43mosubop 4265 . . . . 5  |-  E* z E. u E. f ( y  =  <. u ,  f >.  /\  z  =  R )
54mosubop 4265 . . . 4  |-  E* z E. w E. v ( x  =  <. w ,  v >.  /\  E. u E. f ( y  =  <. u ,  f
>.  /\  z  =  R ) )
6 anass 630 . . . . . . . 8  |-  ( ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )  <->  ( x  =  <. w ,  v
>.  /\  ( y  = 
<. u ,  f >.  /\  z  =  R
) ) )
762exbii 1570 . . . . . . 7  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )  <->  E. u E. f ( x  = 
<. w ,  v >.  /\  ( y  =  <. u ,  f >.  /\  z  =  R ) ) )
8 19.42vv 1848 . . . . . . 7  |-  ( E. u E. f ( x  =  <. w ,  v >.  /\  (
y  =  <. u ,  f >.  /\  z  =  R ) )  <->  ( x  =  <. w ,  v
>.  /\  E. u E. f ( y  = 
<. u ,  f >.  /\  z  =  R
) ) )
97, 8bitri 240 . . . . . 6  |-  ( E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )  <->  ( x  =  <. w ,  v
>.  /\  E. u E. f ( y  = 
<. u ,  f >.  /\  z  =  R
) ) )
1092exbii 1570 . . . . 5  |-  ( E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )  <->  E. w E. v ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  R ) ) )
1110mobii 2179 . . . 4  |-  ( E* z E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  R
)  <->  E* z E. w E. v ( x  = 
<. w ,  v >.  /\  E. u E. f
( y  =  <. u ,  f >.  /\  z  =  R ) ) )
125, 11mpbir 200 . . 3  |-  E* z E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f
>. )  /\  z  =  R )
1312a1i 10 . 2  |-  ( ( x  e.  ( H  X.  H )  /\  y  e.  ( H  X.  H ) )  ->  E* z E. w E. v E. u E. f
( ( x  = 
<. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  =  R
) )
14 oprabex3.2 . 2  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  ( H  X.  H
)  /\  y  e.  ( H  X.  H
) )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v
>.  /\  y  =  <. u ,  f >. )  /\  z  =  R
) ) }
152, 2, 13, 14oprabex 5961 1  |-  F  e. 
_V
Colors of variables: wff set class
Syntax hints:    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   E*wmo 2144   _Vcvv 2788   <.cop 3643    X. cxp 4687   {coprab 5859
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-oprab 5862
  Copyright terms: Public domain W3C validator