MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprabss Unicode version

Theorem oprabss 5949
Description: Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006.)
Assertion
Ref Expression
oprabss  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( ( _V 
X.  _V )  X.  _V )
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem oprabss
StepHypRef Expression
1 reloprab 5912 . . 3  |-  Rel  { <. <. x ,  y
>. ,  z >.  | 
ph }
2 relssdmrn 5209 . . 3  |-  ( Rel 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  ->  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  X.  ran  {
<. <. x ,  y
>. ,  z >.  | 
ph } ) )
31, 2ax-mp 8 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  X.  ran  {
<. <. x ,  y
>. ,  z >.  | 
ph } )
4 reldmoprab 5948 . . . 4  |-  Rel  dom  {
<. <. x ,  y
>. ,  z >.  | 
ph }
5 df-rel 4712 . . . 4  |-  ( Rel 
dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  <->  dom  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( _V  X.  _V ) )
64, 5mpbi 199 . . 3  |-  dom  { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  ( _V  X.  _V )
7 ssv 3211 . . 3  |-  ran  { <. <. x ,  y
>. ,  z >.  | 
ph }  C_  _V
8 xpss12 4808 . . 3  |-  ( ( dom  { <. <. x ,  y >. ,  z
>.  |  ph }  C_  ( _V  X.  _V )  /\  ran  { <. <. x ,  y >. ,  z
>.  |  ph }  C_  _V )  ->  ( dom 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  X.  ran  {
<. <. x ,  y
>. ,  z >.  | 
ph } )  C_  ( ( _V  X.  _V )  X.  _V )
)
96, 7, 8mp2an 653 . 2  |-  ( dom 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  X.  ran  {
<. <. x ,  y
>. ,  z >.  | 
ph } )  C_  ( ( _V  X.  _V )  X.  _V )
103, 9sstri 3201 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  C_  ( ( _V 
X.  _V )  X.  _V )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2801    C_ wss 3165    X. cxp 4703   dom cdm 4705   ran crn 4706   Rel wrel 4710   {coprab 5875
This theorem is referenced by:  morexcmp  26070
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712  df-cnv 4713  df-dm 4715  df-rn 4716  df-oprab 5878
  Copyright terms: Public domain W3C validator