MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprcl Unicode version

Theorem oprcl 3836
Description: If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
oprcl  |-  ( C  e.  <. A ,  B >.  ->  ( A  e. 
_V  /\  B  e.  _V ) )

Proof of Theorem oprcl
StepHypRef Expression
1 n0i 3473 . 2  |-  ( C  e.  <. A ,  B >.  ->  -.  <. A ,  B >.  =  (/) )
2 opprc 3833 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  (/) )
31, 2nsyl2 119 1  |-  ( C  e.  <. A ,  B >.  ->  ( A  e. 
_V  /\  B  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801   (/)c0 3468   <.cop 3656
This theorem is referenced by:  opth1  4260  opth  4261  0nelop  4272
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-v 2803  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-op 3662
  Copyright terms: Public domain W3C validator