MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprcl Unicode version

Theorem oprcl 3820
Description: If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
oprcl  |-  ( C  e.  <. A ,  B >.  ->  ( A  e. 
_V  /\  B  e.  _V ) )

Proof of Theorem oprcl
StepHypRef Expression
1 n0i 3460 . 2  |-  ( C  e.  <. A ,  B >.  ->  -.  <. A ,  B >.  =  (/) )
2 opprc 3817 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  (/) )
31, 2nsyl2 119 1  |-  ( C  e.  <. A ,  B >.  ->  ( A  e. 
_V  /\  B  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788   (/)c0 3455   <.cop 3643
This theorem is referenced by:  opth1  4244  opth  4245  0nelop  4256
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-v 2790  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-op 3649
  Copyright terms: Public domain W3C validator