MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oprssdm Unicode version

Theorem oprssdm 6018
Description: Domain of closure of an operation. (Contributed by NM, 24-Aug-1995.)
Hypotheses
Ref Expression
oprssdm.1  |-  -.  (/)  e.  S
oprssdm.2  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x F y )  e.  S )
Assertion
Ref Expression
oprssdm  |-  ( S  X.  S )  C_  dom  F
Distinct variable groups:    x, y, S    x, F, y

Proof of Theorem oprssdm
StepHypRef Expression
1 relxp 4810 . 2  |-  Rel  ( S  X.  S )
2 opelxp 4735 . . 3  |-  ( <.
x ,  y >.  e.  ( S  X.  S
)  <->  ( x  e.  S  /\  y  e.  S ) )
3 df-ov 5877 . . . . 5  |-  ( x F y )  =  ( F `  <. x ,  y >. )
4 oprssdm.2 . . . . 5  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x F y )  e.  S )
53, 4syl5eqelr 2381 . . . 4  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( F `  <. x ,  y >. )  e.  S )
6 oprssdm.1 . . . . . 6  |-  -.  (/)  e.  S
7 ndmfv 5568 . . . . . . 7  |-  ( -. 
<. x ,  y >.  e.  dom  F  ->  ( F `  <. x ,  y >. )  =  (/) )
87eleq1d 2362 . . . . . 6  |-  ( -. 
<. x ,  y >.  e.  dom  F  ->  (
( F `  <. x ,  y >. )  e.  S  <->  (/)  e.  S ) )
96, 8mtbiri 294 . . . . 5  |-  ( -. 
<. x ,  y >.  e.  dom  F  ->  -.  ( F `  <. x ,  y >. )  e.  S )
109con4i 122 . . . 4  |-  ( ( F `  <. x ,  y >. )  e.  S  ->  <. x ,  y >.  e.  dom  F )
115, 10syl 15 . . 3  |-  ( ( x  e.  S  /\  y  e.  S )  -> 
<. x ,  y >.  e.  dom  F )
122, 11sylbi 187 . 2  |-  ( <.
x ,  y >.  e.  ( S  X.  S
)  ->  <. x ,  y >.  e.  dom  F )
131, 12relssi 4794 1  |-  ( S  X.  S )  C_  dom  F
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    e. wcel 1696    C_ wss 3165   (/)c0 3468   <.cop 3656    X. cxp 4703   dom cdm 4705   ` cfv 5271  (class class class)co 5874
This theorem is referenced by:  dmaddsr  8723  dmmulsr  8724  axaddf  8783  axmulf  8784
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712  df-dm 4715  df-iota 5235  df-fv 5279  df-ov 5877
  Copyright terms: Public domain W3C validator