HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  opsqrlem1 Unicode version

Theorem opsqrlem1 22736
Description: Lemma for opsqri . (Contributed by NM, 9-Aug-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
opsqrlem1.1  |-  T  e. 
HrmOp
opsqrlem1.2  |-  ( normop `  T )  e.  RR
opsqrlem1.3  |-  0hop  <_op  T
opsqrlem1.4  |-  R  =  ( ( 1  / 
( normop `  T )
)  .op  T )
opsqrlem1.5  |-  ( T  =/=  0hop  ->  E. u  e.  HrmOp  ( 0hop  <_op  u  /\  ( u  o.  u
)  =  R ) )
Assertion
Ref Expression
opsqrlem1  |-  ( T  =/=  0hop  ->  E. v  e.  HrmOp  ( 0hop  <_op  v  /\  ( v  o.  v
)  =  T ) )
Distinct variable group:    v, u, T
Allowed substitution hints:    R( v, u)

Proof of Theorem opsqrlem1
StepHypRef Expression
1 opsqrlem1.5 . 2  |-  ( T  =/=  0hop  ->  E. u  e.  HrmOp  ( 0hop  <_op  u  /\  ( u  o.  u
)  =  R ) )
2 opsqrlem1.1 . . . . . . . . . 10  |-  T  e. 
HrmOp
3 hmopf 22470 . . . . . . . . . 10  |-  ( T  e.  HrmOp  ->  T : ~H
--> ~H )
42, 3ax-mp 8 . . . . . . . . 9  |-  T : ~H
--> ~H
5 nmopge0 22507 . . . . . . . . 9  |-  ( T : ~H --> ~H  ->  0  <_  ( normop `  T
) )
64, 5ax-mp 8 . . . . . . . 8  |-  0  <_  ( normop `  T )
7 opsqrlem1.2 . . . . . . . . 9  |-  ( normop `  T )  e.  RR
87sqrcli 11871 . . . . . . . 8  |-  ( 0  <_  ( normop `  T
)  ->  ( sqr `  ( normop `  T )
)  e.  RR )
96, 8ax-mp 8 . . . . . . 7  |-  ( sqr `  ( normop `  T )
)  e.  RR
10 hmopm 22617 . . . . . . 7  |-  ( ( ( sqr `  ( normop `  T ) )  e.  RR  /\  u  e. 
HrmOp )  ->  ( ( sqr `  ( normop `  T ) )  .op  u )  e.  HrmOp )
119, 10mpan 651 . . . . . 6  |-  ( u  e.  HrmOp  ->  ( ( sqr `  ( normop `  T
) )  .op  u
)  e.  HrmOp )
1211ad2antlr 707 . . . . 5  |-  ( ( ( T  =/=  0hop  /\  u  e.  HrmOp )  /\  ( 0hop  <_op  u  /\  ( u  o.  u
)  =  R ) )  ->  ( ( sqr `  ( normop `  T
) )  .op  u
)  e.  HrmOp )
137sqrge0i 11876 . . . . . . . . 9  |-  ( 0  <_  ( normop `  T
)  ->  0  <_  ( sqr `  ( normop `  T ) ) )
146, 13ax-mp 8 . . . . . . . 8  |-  0  <_  ( sqr `  ( normop `  T ) )
15 leopmuli 22729 . . . . . . . 8  |-  ( ( ( ( sqr `  ( normop `  T ) )  e.  RR  /\  u  e. 
HrmOp )  /\  (
0  <_  ( sqr `  ( normop `  T )
)  /\  0hop  <_op  u
) )  ->  0hop  <_op  (
( sqr `  ( normop `  T ) )  .op  u ) )
1614, 15mpanr1 664 . . . . . . 7  |-  ( ( ( ( sqr `  ( normop `  T ) )  e.  RR  /\  u  e. 
HrmOp )  /\  0hop  <_op  u
)  ->  0hop  <_op  (
( sqr `  ( normop `  T ) )  .op  u ) )
179, 16mpanl1 661 . . . . . 6  |-  ( ( u  e.  HrmOp  /\  0hop  <_op 
u )  ->  0hop  <_op  (
( sqr `  ( normop `  T ) )  .op  u ) )
1817ad2ant2lr 728 . . . . 5  |-  ( ( ( T  =/=  0hop  /\  u  e.  HrmOp )  /\  ( 0hop  <_op  u  /\  ( u  o.  u
)  =  R ) )  ->  0hop  <_op  (
( sqr `  ( normop `  T ) )  .op  u ) )
19 hmopf 22470 . . . . . . . . . 10  |-  ( u  e.  HrmOp  ->  u : ~H
--> ~H )
209recni 8865 . . . . . . . . . . . 12  |-  ( sqr `  ( normop `  T )
)  e.  CC
21 homulcl 22355 . . . . . . . . . . . 12  |-  ( ( ( sqr `  ( normop `  T ) )  e.  CC  /\  u : ~H --> ~H )  -> 
( ( sqr `  ( normop `  T ) )  .op  u ) : ~H --> ~H )
2220, 21mpan 651 . . . . . . . . . . 11  |-  ( u : ~H --> ~H  ->  ( ( sqr `  ( normop `  T ) )  .op  u ) : ~H --> ~H )
2319, 22syl 15 . . . . . . . . . 10  |-  ( u  e.  HrmOp  ->  ( ( sqr `  ( normop `  T
) )  .op  u
) : ~H --> ~H )
24 homco1 22397 . . . . . . . . . . 11  |-  ( ( ( sqr `  ( normop `  T ) )  e.  CC  /\  u : ~H --> ~H  /\  (
( sqr `  ( normop `  T ) )  .op  u ) : ~H --> ~H )  ->  ( ( ( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) )  =  ( ( sqr `  ( normop `  T ) )  .op  ( u  o.  (
( sqr `  ( normop `  T ) )  .op  u ) ) ) )
2520, 24mp3an1 1264 . . . . . . . . . 10  |-  ( ( u : ~H --> ~H  /\  ( ( sqr `  ( normop `  T ) )  .op  u ) : ~H --> ~H )  ->  ( ( ( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) )  =  ( ( sqr `  ( normop `  T ) )  .op  ( u  o.  (
( sqr `  ( normop `  T ) )  .op  u ) ) ) )
2619, 23, 25syl2anc 642 . . . . . . . . 9  |-  ( u  e.  HrmOp  ->  ( (
( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) )  =  ( ( sqr `  ( normop `  T ) )  .op  ( u  o.  (
( sqr `  ( normop `  T ) )  .op  u ) ) ) )
27 hmoplin 22538 . . . . . . . . . . 11  |-  ( u  e.  HrmOp  ->  u  e.  LinOp
)
28 homco2 22573 . . . . . . . . . . . 12  |-  ( ( ( sqr `  ( normop `  T ) )  e.  CC  /\  u  e. 
LinOp  /\  u : ~H --> ~H )  ->  ( u  o.  ( ( sqr `  ( normop `  T )
)  .op  u )
)  =  ( ( sqr `  ( normop `  T ) )  .op  ( u  o.  u
) ) )
2920, 28mp3an1 1264 . . . . . . . . . . 11  |-  ( ( u  e.  LinOp  /\  u : ~H --> ~H )  -> 
( u  o.  (
( sqr `  ( normop `  T ) )  .op  u ) )  =  ( ( sqr `  ( normop `  T ) )  .op  ( u  o.  u
) ) )
3027, 19, 29syl2anc 642 . . . . . . . . . 10  |-  ( u  e.  HrmOp  ->  ( u  o.  ( ( sqr `  ( normop `  T ) )  .op  u ) )  =  ( ( sqr `  ( normop `  T ) )  .op  ( u  o.  u
) ) )
3130oveq2d 5890 . . . . . . . . 9  |-  ( u  e.  HrmOp  ->  ( ( sqr `  ( normop `  T
) )  .op  (
u  o.  ( ( sqr `  ( normop `  T ) )  .op  u ) ) )  =  ( ( sqr `  ( normop `  T )
)  .op  ( ( sqr `  ( normop `  T
) )  .op  (
u  o.  u ) ) ) )
327sqrthi 11870 . . . . . . . . . . . 12  |-  ( 0  <_  ( normop `  T
)  ->  ( ( sqr `  ( normop `  T
) )  x.  ( sqr `  ( normop `  T
) ) )  =  ( normop `  T )
)
336, 32ax-mp 8 . . . . . . . . . . 11  |-  ( ( sqr `  ( normop `  T ) )  x.  ( sqr `  ( normop `  T ) ) )  =  ( normop `  T
)
3433oveq1i 5884 . . . . . . . . . 10  |-  ( ( ( sqr `  ( normop `  T ) )  x.  ( sqr `  ( normop `  T ) ) ) 
.op  ( u  o.  u ) )  =  ( ( normop `  T
)  .op  ( u  o.  u ) )
35 fco 5414 . . . . . . . . . . . 12  |-  ( ( u : ~H --> ~H  /\  u : ~H --> ~H )  ->  ( u  o.  u
) : ~H --> ~H )
3619, 19, 35syl2anc 642 . . . . . . . . . . 11  |-  ( u  e.  HrmOp  ->  ( u  o.  u ) : ~H --> ~H )
37 homulass 22398 . . . . . . . . . . . 12  |-  ( ( ( sqr `  ( normop `  T ) )  e.  CC  /\  ( sqr `  ( normop `  T )
)  e.  CC  /\  ( u  o.  u
) : ~H --> ~H )  ->  ( ( ( sqr `  ( normop `  T )
)  x.  ( sqr `  ( normop `  T )
) )  .op  (
u  o.  u ) )  =  ( ( sqr `  ( normop `  T ) )  .op  ( ( sqr `  ( normop `  T ) )  .op  ( u  o.  u
) ) ) )
3820, 20, 37mp3an12 1267 . . . . . . . . . . 11  |-  ( ( u  o.  u ) : ~H --> ~H  ->  ( ( ( sqr `  ( normop `  T ) )  x.  ( sqr `  ( normop `  T ) ) ) 
.op  ( u  o.  u ) )  =  ( ( sqr `  ( normop `  T ) )  .op  ( ( sqr `  ( normop `  T ) )  .op  ( u  o.  u
) ) ) )
3936, 38syl 15 . . . . . . . . . 10  |-  ( u  e.  HrmOp  ->  ( (
( sqr `  ( normop `  T ) )  x.  ( sqr `  ( normop `  T ) ) ) 
.op  ( u  o.  u ) )  =  ( ( sqr `  ( normop `  T ) )  .op  ( ( sqr `  ( normop `  T ) )  .op  ( u  o.  u
) ) ) )
4034, 39syl5reqr 2343 . . . . . . . . 9  |-  ( u  e.  HrmOp  ->  ( ( sqr `  ( normop `  T
) )  .op  (
( sqr `  ( normop `  T ) )  .op  ( u  o.  u
) ) )  =  ( ( normop `  T
)  .op  ( u  o.  u ) ) )
4126, 31, 403eqtrd 2332 . . . . . . . 8  |-  ( u  e.  HrmOp  ->  ( (
( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) )  =  ( ( normop `  T
)  .op  ( u  o.  u ) ) )
4241ad2antlr 707 . . . . . . 7  |-  ( ( ( T  =/=  0hop  /\  u  e.  HrmOp )  /\  ( u  o.  u
)  =  R )  ->  ( ( ( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) )  =  ( ( normop `  T
)  .op  ( u  o.  u ) ) )
43 id 19 . . . . . . . . . . 11  |-  ( ( u  o.  u )  =  R  ->  (
u  o.  u )  =  R )
44 opsqrlem1.4 . . . . . . . . . . 11  |-  R  =  ( ( 1  / 
( normop `  T )
)  .op  T )
4543, 44syl6eq 2344 . . . . . . . . . 10  |-  ( ( u  o.  u )  =  R  ->  (
u  o.  u )  =  ( ( 1  /  ( normop `  T
) )  .op  T
) )
4645oveq2d 5890 . . . . . . . . 9  |-  ( ( u  o.  u )  =  R  ->  (
( normop `  T )  .op  ( u  o.  u
) )  =  ( ( normop `  T )  .op  ( ( 1  / 
( normop `  T )
)  .op  T )
) )
47 hmoplin 22538 . . . . . . . . . . . . . 14  |-  ( T  e.  HrmOp  ->  T  e.  LinOp
)
482, 47ax-mp 8 . . . . . . . . . . . . 13  |-  T  e. 
LinOp
49 nmlnopne0 22595 . . . . . . . . . . . . 13  |-  ( T  e.  LinOp  ->  ( ( normop `  T )  =/=  0  <->  T  =/=  0hop ) )
5048, 49ax-mp 8 . . . . . . . . . . . 12  |-  ( (
normop `  T )  =/=  0  <->  T  =/=  0hop )
517recni 8865 . . . . . . . . . . . . 13  |-  ( normop `  T )  e.  CC
5251recidzi 9503 . . . . . . . . . . . 12  |-  ( (
normop `  T )  =/=  0  ->  ( ( normop `  T )  x.  (
1  /  ( normop `  T ) ) )  =  1 )
5350, 52sylbir 204 . . . . . . . . . . 11  |-  ( T  =/=  0hop  ->  ( (
normop `  T )  x.  ( 1  /  ( normop `  T ) ) )  =  1 )
5453oveq1d 5889 . . . . . . . . . 10  |-  ( T  =/=  0hop  ->  ( ( ( normop `  T )  x.  ( 1  /  ( normop `  T ) ) ) 
.op  T )  =  ( 1  .op  T
) )
557rerecclzi 9540 . . . . . . . . . . . . 13  |-  ( (
normop `  T )  =/=  0  ->  ( 1  /  ( normop `  T
) )  e.  RR )
5650, 55sylbir 204 . . . . . . . . . . . 12  |-  ( T  =/=  0hop  ->  ( 1  /  ( normop `  T
) )  e.  RR )
5756recnd 8877 . . . . . . . . . . 11  |-  ( T  =/=  0hop  ->  ( 1  /  ( normop `  T
) )  e.  CC )
58 homulass 22398 . . . . . . . . . . . 12  |-  ( ( ( normop `  T )  e.  CC  /\  ( 1  /  ( normop `  T
) )  e.  CC  /\  T : ~H --> ~H )  ->  ( ( ( normop `  T )  x.  (
1  /  ( normop `  T ) ) ) 
.op  T )  =  ( ( normop `  T
)  .op  ( (
1  /  ( normop `  T ) )  .op  T ) ) )
5951, 4, 58mp3an13 1268 . . . . . . . . . . 11  |-  ( ( 1  /  ( normop `  T ) )  e.  CC  ->  ( (
( normop `  T )  x.  ( 1  /  ( normop `  T ) ) ) 
.op  T )  =  ( ( normop `  T
)  .op  ( (
1  /  ( normop `  T ) )  .op  T ) ) )
6057, 59syl 15 . . . . . . . . . 10  |-  ( T  =/=  0hop  ->  ( ( ( normop `  T )  x.  ( 1  /  ( normop `  T ) ) ) 
.op  T )  =  ( ( normop `  T
)  .op  ( (
1  /  ( normop `  T ) )  .op  T ) ) )
61 homulid2 22396 . . . . . . . . . . 11  |-  ( T : ~H --> ~H  ->  ( 1  .op  T )  =  T )
624, 61mp1i 11 . . . . . . . . . 10  |-  ( T  =/=  0hop  ->  ( 1 
.op  T )  =  T )
6354, 60, 623eqtr3d 2336 . . . . . . . . 9  |-  ( T  =/=  0hop  ->  ( (
normop `  T )  .op  ( ( 1  / 
( normop `  T )
)  .op  T )
)  =  T )
6446, 63sylan9eqr 2350 . . . . . . . 8  |-  ( ( T  =/=  0hop  /\  (
u  o.  u )  =  R )  -> 
( ( normop `  T
)  .op  ( u  o.  u ) )  =  T )
6564adantlr 695 . . . . . . 7  |-  ( ( ( T  =/=  0hop  /\  u  e.  HrmOp )  /\  ( u  o.  u
)  =  R )  ->  ( ( normop `  T )  .op  (
u  o.  u ) )  =  T )
6642, 65eqtrd 2328 . . . . . 6  |-  ( ( ( T  =/=  0hop  /\  u  e.  HrmOp )  /\  ( u  o.  u
)  =  R )  ->  ( ( ( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) )  =  T )
6766adantrl 696 . . . . 5  |-  ( ( ( T  =/=  0hop  /\  u  e.  HrmOp )  /\  ( 0hop  <_op  u  /\  ( u  o.  u
)  =  R ) )  ->  ( (
( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) )  =  T )
68 breq2 4043 . . . . . . 7  |-  ( v  =  ( ( sqr `  ( normop `  T )
)  .op  u )  ->  ( 0hop  <_op  v  <->  0hop  <_op  (
( sqr `  ( normop `  T ) )  .op  u ) ) )
69 coeq1 4857 . . . . . . . . 9  |-  ( v  =  ( ( sqr `  ( normop `  T )
)  .op  u )  ->  ( v  o.  v
)  =  ( ( ( sqr `  ( normop `  T ) )  .op  u )  o.  v
) )
70 coeq2 4858 . . . . . . . . 9  |-  ( v  =  ( ( sqr `  ( normop `  T )
)  .op  u )  ->  ( ( ( sqr `  ( normop `  T )
)  .op  u )  o.  v )  =  ( ( ( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) ) )
7169, 70eqtrd 2328 . . . . . . . 8  |-  ( v  =  ( ( sqr `  ( normop `  T )
)  .op  u )  ->  ( v  o.  v
)  =  ( ( ( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) ) )
7271eqeq1d 2304 . . . . . . 7  |-  ( v  =  ( ( sqr `  ( normop `  T )
)  .op  u )  ->  ( ( v  o.  v )  =  T  <-> 
( ( ( sqr `  ( normop `  T )
)  .op  u )  o.  ( ( sqr `  ( normop `  T ) )  .op  u ) )  =  T ) )
7368, 72anbi12d 691 . . . . . 6  |-  ( v  =  ( ( sqr `  ( normop `  T )
)  .op  u )  ->  ( ( 0hop  <_op  v  /\  ( v  o.  v
)  =  T )  <-> 
( 0hop  <_op  ( ( sqr `  ( normop `  T ) )  .op  u )  /\  (
( ( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) )  =  T ) ) )
7473rspcev 2897 . . . . 5  |-  ( ( ( ( sqr `  ( normop `  T ) )  .op  u )  e.  HrmOp  /\  ( 0hop  <_op  ( ( sqr `  ( normop `  T ) )  .op  u )  /\  (
( ( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) )  =  T ) )  ->  E. v  e.  HrmOp  ( 0hop  <_op  v  /\  ( v  o.  v )  =  T ) )
7512, 18, 67, 74syl12anc 1180 . . . 4  |-  ( ( ( T  =/=  0hop  /\  u  e.  HrmOp )  /\  ( 0hop  <_op  u  /\  ( u  o.  u
)  =  R ) )  ->  E. v  e.  HrmOp  ( 0hop  <_op  v  /\  ( v  o.  v
)  =  T ) )
7675exp31 587 . . 3  |-  ( T  =/=  0hop  ->  ( u  e.  HrmOp  ->  ( ( 0hop  <_op  u  /\  (
u  o.  u )  =  R )  ->  E. v  e.  HrmOp  ( 0hop  <_op  v  /\  ( v  o.  v )  =  T ) ) ) )
7776rexlimdv 2679 . 2  |-  ( T  =/=  0hop  ->  ( E. u  e.  HrmOp  ( 0hop  <_op  u  /\  ( u  o.  u )  =  R )  ->  E. v  e.  HrmOp  ( 0hop  <_op  v  /\  ( v  o.  v
)  =  T ) ) )
781, 77mpd 14 1  |-  ( T  =/=  0hop  ->  E. v  e.  HrmOp  ( 0hop  <_op  v  /\  ( v  o.  v
)  =  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   E.wrex 2557   class class class wbr 4039    o. ccom 4709   -->wf 5267   ` cfv 5271  (class class class)co 5874   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    x. cmul 8758    <_ cle 8884    / cdiv 9439   sqrcsqr 11734   ~Hchil 21515    .op chot 21535   0hopch0o 21539   normopcnop 21541   LinOpclo 21543   HrmOpcho 21546    <_op cleo 21554
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cc 8077  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833  ax-hilex 21595  ax-hfvadd 21596  ax-hvcom 21597  ax-hvass 21598  ax-hv0cl 21599  ax-hvaddid 21600  ax-hfvmul 21601  ax-hvmulid 21602  ax-hvmulass 21603  ax-hvdistr1 21604  ax-hvdistr2 21605  ax-hvmul0 21606  ax-hfi 21674  ax-his1 21677  ax-his2 21678  ax-his3 21679  ax-his4 21680  ax-hcompl 21797
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-omul 6500  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-acn 7591  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-rlim 11979  df-sum 12175  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-cn 16973  df-cnp 16974  df-lm 16975  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cfil 18697  df-cau 18698  df-cmet 18699  df-grpo 20874  df-gid 20875  df-ginv 20876  df-gdiv 20877  df-ablo 20965  df-subgo 20985  df-vc 21118  df-nv 21164  df-va 21167  df-ba 21168  df-sm 21169  df-0v 21170  df-vs 21171  df-nmcv 21172  df-ims 21173  df-dip 21290  df-ssp 21314  df-lno 21338  df-nmoo 21339  df-0o 21341  df-ph 21407  df-cbn 21458  df-hnorm 21564  df-hba 21565  df-hvsub 21567  df-hlim 21568  df-hcau 21569  df-sh 21802  df-ch 21817  df-oc 21847  df-ch0 21848  df-shs 21903  df-pjh 21990  df-hosum 22326  df-homul 22327  df-hodif 22328  df-h0op 22344  df-nmop 22435  df-lnop 22437  df-hmop 22440  df-leop 22448
  Copyright terms: Public domain W3C validator