HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  opsqrlem1 Unicode version

Theorem opsqrlem1 22720
Description: Lemma for opsqri . (Contributed by NM, 9-Aug-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
opsqrlem1.1  |-  T  e. 
HrmOp
opsqrlem1.2  |-  ( normop `  T )  e.  RR
opsqrlem1.3  |-  0hop  <_op  T
opsqrlem1.4  |-  R  =  ( ( 1  / 
( normop `  T )
)  .op  T )
opsqrlem1.5  |-  ( T  =/=  0hop  ->  E. u  e.  HrmOp  ( 0hop  <_op  u  /\  ( u  o.  u
)  =  R ) )
Assertion
Ref Expression
opsqrlem1  |-  ( T  =/=  0hop  ->  E. v  e.  HrmOp  ( 0hop  <_op  v  /\  ( v  o.  v
)  =  T ) )
Distinct variable group:    v, u, T
Allowed substitution hints:    R( v, u)

Proof of Theorem opsqrlem1
StepHypRef Expression
1 opsqrlem1.5 . 2  |-  ( T  =/=  0hop  ->  E. u  e.  HrmOp  ( 0hop  <_op  u  /\  ( u  o.  u
)  =  R ) )
2 opsqrlem1.1 . . . . . . . . . 10  |-  T  e. 
HrmOp
3 hmopf 22454 . . . . . . . . . 10  |-  ( T  e.  HrmOp  ->  T : ~H
--> ~H )
42, 3ax-mp 8 . . . . . . . . 9  |-  T : ~H
--> ~H
5 nmopge0 22491 . . . . . . . . 9  |-  ( T : ~H --> ~H  ->  0  <_  ( normop `  T
) )
64, 5ax-mp 8 . . . . . . . 8  |-  0  <_  ( normop `  T )
7 opsqrlem1.2 . . . . . . . . 9  |-  ( normop `  T )  e.  RR
87sqrcli 11855 . . . . . . . 8  |-  ( 0  <_  ( normop `  T
)  ->  ( sqr `  ( normop `  T )
)  e.  RR )
96, 8ax-mp 8 . . . . . . 7  |-  ( sqr `  ( normop `  T )
)  e.  RR
10 hmopm 22601 . . . . . . 7  |-  ( ( ( sqr `  ( normop `  T ) )  e.  RR  /\  u  e. 
HrmOp )  ->  ( ( sqr `  ( normop `  T ) )  .op  u )  e.  HrmOp )
119, 10mpan 651 . . . . . 6  |-  ( u  e.  HrmOp  ->  ( ( sqr `  ( normop `  T
) )  .op  u
)  e.  HrmOp )
1211ad2antlr 707 . . . . 5  |-  ( ( ( T  =/=  0hop  /\  u  e.  HrmOp )  /\  ( 0hop  <_op  u  /\  ( u  o.  u
)  =  R ) )  ->  ( ( sqr `  ( normop `  T
) )  .op  u
)  e.  HrmOp )
137sqrge0i 11860 . . . . . . . . 9  |-  ( 0  <_  ( normop `  T
)  ->  0  <_  ( sqr `  ( normop `  T ) ) )
146, 13ax-mp 8 . . . . . . . 8  |-  0  <_  ( sqr `  ( normop `  T ) )
15 leopmuli 22713 . . . . . . . 8  |-  ( ( ( ( sqr `  ( normop `  T ) )  e.  RR  /\  u  e. 
HrmOp )  /\  (
0  <_  ( sqr `  ( normop `  T )
)  /\  0hop  <_op  u
) )  ->  0hop  <_op  (
( sqr `  ( normop `  T ) )  .op  u ) )
1614, 15mpanr1 664 . . . . . . 7  |-  ( ( ( ( sqr `  ( normop `  T ) )  e.  RR  /\  u  e. 
HrmOp )  /\  0hop  <_op  u
)  ->  0hop  <_op  (
( sqr `  ( normop `  T ) )  .op  u ) )
179, 16mpanl1 661 . . . . . 6  |-  ( ( u  e.  HrmOp  /\  0hop  <_op 
u )  ->  0hop  <_op  (
( sqr `  ( normop `  T ) )  .op  u ) )
1817ad2ant2lr 728 . . . . 5  |-  ( ( ( T  =/=  0hop  /\  u  e.  HrmOp )  /\  ( 0hop  <_op  u  /\  ( u  o.  u
)  =  R ) )  ->  0hop  <_op  (
( sqr `  ( normop `  T ) )  .op  u ) )
19 hmopf 22454 . . . . . . . . . 10  |-  ( u  e.  HrmOp  ->  u : ~H
--> ~H )
209recni 8849 . . . . . . . . . . . 12  |-  ( sqr `  ( normop `  T )
)  e.  CC
21 homulcl 22339 . . . . . . . . . . . 12  |-  ( ( ( sqr `  ( normop `  T ) )  e.  CC  /\  u : ~H --> ~H )  -> 
( ( sqr `  ( normop `  T ) )  .op  u ) : ~H --> ~H )
2220, 21mpan 651 . . . . . . . . . . 11  |-  ( u : ~H --> ~H  ->  ( ( sqr `  ( normop `  T ) )  .op  u ) : ~H --> ~H )
2319, 22syl 15 . . . . . . . . . 10  |-  ( u  e.  HrmOp  ->  ( ( sqr `  ( normop `  T
) )  .op  u
) : ~H --> ~H )
24 homco1 22381 . . . . . . . . . . 11  |-  ( ( ( sqr `  ( normop `  T ) )  e.  CC  /\  u : ~H --> ~H  /\  (
( sqr `  ( normop `  T ) )  .op  u ) : ~H --> ~H )  ->  ( ( ( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) )  =  ( ( sqr `  ( normop `  T ) )  .op  ( u  o.  (
( sqr `  ( normop `  T ) )  .op  u ) ) ) )
2520, 24mp3an1 1264 . . . . . . . . . 10  |-  ( ( u : ~H --> ~H  /\  ( ( sqr `  ( normop `  T ) )  .op  u ) : ~H --> ~H )  ->  ( ( ( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) )  =  ( ( sqr `  ( normop `  T ) )  .op  ( u  o.  (
( sqr `  ( normop `  T ) )  .op  u ) ) ) )
2619, 23, 25syl2anc 642 . . . . . . . . 9  |-  ( u  e.  HrmOp  ->  ( (
( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) )  =  ( ( sqr `  ( normop `  T ) )  .op  ( u  o.  (
( sqr `  ( normop `  T ) )  .op  u ) ) ) )
27 hmoplin 22522 . . . . . . . . . . 11  |-  ( u  e.  HrmOp  ->  u  e.  LinOp
)
28 homco2 22557 . . . . . . . . . . . 12  |-  ( ( ( sqr `  ( normop `  T ) )  e.  CC  /\  u  e. 
LinOp  /\  u : ~H --> ~H )  ->  ( u  o.  ( ( sqr `  ( normop `  T )
)  .op  u )
)  =  ( ( sqr `  ( normop `  T ) )  .op  ( u  o.  u
) ) )
2920, 28mp3an1 1264 . . . . . . . . . . 11  |-  ( ( u  e.  LinOp  /\  u : ~H --> ~H )  -> 
( u  o.  (
( sqr `  ( normop `  T ) )  .op  u ) )  =  ( ( sqr `  ( normop `  T ) )  .op  ( u  o.  u
) ) )
3027, 19, 29syl2anc 642 . . . . . . . . . 10  |-  ( u  e.  HrmOp  ->  ( u  o.  ( ( sqr `  ( normop `  T ) )  .op  u ) )  =  ( ( sqr `  ( normop `  T ) )  .op  ( u  o.  u
) ) )
3130oveq2d 5874 . . . . . . . . 9  |-  ( u  e.  HrmOp  ->  ( ( sqr `  ( normop `  T
) )  .op  (
u  o.  ( ( sqr `  ( normop `  T ) )  .op  u ) ) )  =  ( ( sqr `  ( normop `  T )
)  .op  ( ( sqr `  ( normop `  T
) )  .op  (
u  o.  u ) ) ) )
327sqrthi 11854 . . . . . . . . . . . 12  |-  ( 0  <_  ( normop `  T
)  ->  ( ( sqr `  ( normop `  T
) )  x.  ( sqr `  ( normop `  T
) ) )  =  ( normop `  T )
)
336, 32ax-mp 8 . . . . . . . . . . 11  |-  ( ( sqr `  ( normop `  T ) )  x.  ( sqr `  ( normop `  T ) ) )  =  ( normop `  T
)
3433oveq1i 5868 . . . . . . . . . 10  |-  ( ( ( sqr `  ( normop `  T ) )  x.  ( sqr `  ( normop `  T ) ) ) 
.op  ( u  o.  u ) )  =  ( ( normop `  T
)  .op  ( u  o.  u ) )
35 fco 5398 . . . . . . . . . . . 12  |-  ( ( u : ~H --> ~H  /\  u : ~H --> ~H )  ->  ( u  o.  u
) : ~H --> ~H )
3619, 19, 35syl2anc 642 . . . . . . . . . . 11  |-  ( u  e.  HrmOp  ->  ( u  o.  u ) : ~H --> ~H )
37 homulass 22382 . . . . . . . . . . . 12  |-  ( ( ( sqr `  ( normop `  T ) )  e.  CC  /\  ( sqr `  ( normop `  T )
)  e.  CC  /\  ( u  o.  u
) : ~H --> ~H )  ->  ( ( ( sqr `  ( normop `  T )
)  x.  ( sqr `  ( normop `  T )
) )  .op  (
u  o.  u ) )  =  ( ( sqr `  ( normop `  T ) )  .op  ( ( sqr `  ( normop `  T ) )  .op  ( u  o.  u
) ) ) )
3820, 20, 37mp3an12 1267 . . . . . . . . . . 11  |-  ( ( u  o.  u ) : ~H --> ~H  ->  ( ( ( sqr `  ( normop `  T ) )  x.  ( sqr `  ( normop `  T ) ) ) 
.op  ( u  o.  u ) )  =  ( ( sqr `  ( normop `  T ) )  .op  ( ( sqr `  ( normop `  T ) )  .op  ( u  o.  u
) ) ) )
3936, 38syl 15 . . . . . . . . . 10  |-  ( u  e.  HrmOp  ->  ( (
( sqr `  ( normop `  T ) )  x.  ( sqr `  ( normop `  T ) ) ) 
.op  ( u  o.  u ) )  =  ( ( sqr `  ( normop `  T ) )  .op  ( ( sqr `  ( normop `  T ) )  .op  ( u  o.  u
) ) ) )
4034, 39syl5reqr 2330 . . . . . . . . 9  |-  ( u  e.  HrmOp  ->  ( ( sqr `  ( normop `  T
) )  .op  (
( sqr `  ( normop `  T ) )  .op  ( u  o.  u
) ) )  =  ( ( normop `  T
)  .op  ( u  o.  u ) ) )
4126, 31, 403eqtrd 2319 . . . . . . . 8  |-  ( u  e.  HrmOp  ->  ( (
( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) )  =  ( ( normop `  T
)  .op  ( u  o.  u ) ) )
4241ad2antlr 707 . . . . . . 7  |-  ( ( ( T  =/=  0hop  /\  u  e.  HrmOp )  /\  ( u  o.  u
)  =  R )  ->  ( ( ( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) )  =  ( ( normop `  T
)  .op  ( u  o.  u ) ) )
43 id 19 . . . . . . . . . . 11  |-  ( ( u  o.  u )  =  R  ->  (
u  o.  u )  =  R )
44 opsqrlem1.4 . . . . . . . . . . 11  |-  R  =  ( ( 1  / 
( normop `  T )
)  .op  T )
4543, 44syl6eq 2331 . . . . . . . . . 10  |-  ( ( u  o.  u )  =  R  ->  (
u  o.  u )  =  ( ( 1  /  ( normop `  T
) )  .op  T
) )
4645oveq2d 5874 . . . . . . . . 9  |-  ( ( u  o.  u )  =  R  ->  (
( normop `  T )  .op  ( u  o.  u
) )  =  ( ( normop `  T )  .op  ( ( 1  / 
( normop `  T )
)  .op  T )
) )
47 hmoplin 22522 . . . . . . . . . . . . . 14  |-  ( T  e.  HrmOp  ->  T  e.  LinOp
)
482, 47ax-mp 8 . . . . . . . . . . . . 13  |-  T  e. 
LinOp
49 nmlnopne0 22579 . . . . . . . . . . . . 13  |-  ( T  e.  LinOp  ->  ( ( normop `  T )  =/=  0  <->  T  =/=  0hop ) )
5048, 49ax-mp 8 . . . . . . . . . . . 12  |-  ( (
normop `  T )  =/=  0  <->  T  =/=  0hop )
517recni 8849 . . . . . . . . . . . . 13  |-  ( normop `  T )  e.  CC
5251recidzi 9487 . . . . . . . . . . . 12  |-  ( (
normop `  T )  =/=  0  ->  ( ( normop `  T )  x.  (
1  /  ( normop `  T ) ) )  =  1 )
5350, 52sylbir 204 . . . . . . . . . . 11  |-  ( T  =/=  0hop  ->  ( (
normop `  T )  x.  ( 1  /  ( normop `  T ) ) )  =  1 )
5453oveq1d 5873 . . . . . . . . . 10  |-  ( T  =/=  0hop  ->  ( ( ( normop `  T )  x.  ( 1  /  ( normop `  T ) ) ) 
.op  T )  =  ( 1  .op  T
) )
557rerecclzi 9524 . . . . . . . . . . . . 13  |-  ( (
normop `  T )  =/=  0  ->  ( 1  /  ( normop `  T
) )  e.  RR )
5650, 55sylbir 204 . . . . . . . . . . . 12  |-  ( T  =/=  0hop  ->  ( 1  /  ( normop `  T
) )  e.  RR )
5756recnd 8861 . . . . . . . . . . 11  |-  ( T  =/=  0hop  ->  ( 1  /  ( normop `  T
) )  e.  CC )
58 homulass 22382 . . . . . . . . . . . 12  |-  ( ( ( normop `  T )  e.  CC  /\  ( 1  /  ( normop `  T
) )  e.  CC  /\  T : ~H --> ~H )  ->  ( ( ( normop `  T )  x.  (
1  /  ( normop `  T ) ) ) 
.op  T )  =  ( ( normop `  T
)  .op  ( (
1  /  ( normop `  T ) )  .op  T ) ) )
5951, 4, 58mp3an13 1268 . . . . . . . . . . 11  |-  ( ( 1  /  ( normop `  T ) )  e.  CC  ->  ( (
( normop `  T )  x.  ( 1  /  ( normop `  T ) ) ) 
.op  T )  =  ( ( normop `  T
)  .op  ( (
1  /  ( normop `  T ) )  .op  T ) ) )
6057, 59syl 15 . . . . . . . . . 10  |-  ( T  =/=  0hop  ->  ( ( ( normop `  T )  x.  ( 1  /  ( normop `  T ) ) ) 
.op  T )  =  ( ( normop `  T
)  .op  ( (
1  /  ( normop `  T ) )  .op  T ) ) )
61 homulid2 22380 . . . . . . . . . . 11  |-  ( T : ~H --> ~H  ->  ( 1  .op  T )  =  T )
624, 61mp1i 11 . . . . . . . . . 10  |-  ( T  =/=  0hop  ->  ( 1 
.op  T )  =  T )
6354, 60, 623eqtr3d 2323 . . . . . . . . 9  |-  ( T  =/=  0hop  ->  ( (
normop `  T )  .op  ( ( 1  / 
( normop `  T )
)  .op  T )
)  =  T )
6446, 63sylan9eqr 2337 . . . . . . . 8  |-  ( ( T  =/=  0hop  /\  (
u  o.  u )  =  R )  -> 
( ( normop `  T
)  .op  ( u  o.  u ) )  =  T )
6564adantlr 695 . . . . . . 7  |-  ( ( ( T  =/=  0hop  /\  u  e.  HrmOp )  /\  ( u  o.  u
)  =  R )  ->  ( ( normop `  T )  .op  (
u  o.  u ) )  =  T )
6642, 65eqtrd 2315 . . . . . 6  |-  ( ( ( T  =/=  0hop  /\  u  e.  HrmOp )  /\  ( u  o.  u
)  =  R )  ->  ( ( ( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) )  =  T )
6766adantrl 696 . . . . 5  |-  ( ( ( T  =/=  0hop  /\  u  e.  HrmOp )  /\  ( 0hop  <_op  u  /\  ( u  o.  u
)  =  R ) )  ->  ( (
( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) )  =  T )
68 breq2 4027 . . . . . . 7  |-  ( v  =  ( ( sqr `  ( normop `  T )
)  .op  u )  ->  ( 0hop  <_op  v  <->  0hop  <_op  (
( sqr `  ( normop `  T ) )  .op  u ) ) )
69 coeq1 4841 . . . . . . . . 9  |-  ( v  =  ( ( sqr `  ( normop `  T )
)  .op  u )  ->  ( v  o.  v
)  =  ( ( ( sqr `  ( normop `  T ) )  .op  u )  o.  v
) )
70 coeq2 4842 . . . . . . . . 9  |-  ( v  =  ( ( sqr `  ( normop `  T )
)  .op  u )  ->  ( ( ( sqr `  ( normop `  T )
)  .op  u )  o.  v )  =  ( ( ( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) ) )
7169, 70eqtrd 2315 . . . . . . . 8  |-  ( v  =  ( ( sqr `  ( normop `  T )
)  .op  u )  ->  ( v  o.  v
)  =  ( ( ( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) ) )
7271eqeq1d 2291 . . . . . . 7  |-  ( v  =  ( ( sqr `  ( normop `  T )
)  .op  u )  ->  ( ( v  o.  v )  =  T  <-> 
( ( ( sqr `  ( normop `  T )
)  .op  u )  o.  ( ( sqr `  ( normop `  T ) )  .op  u ) )  =  T ) )
7368, 72anbi12d 691 . . . . . 6  |-  ( v  =  ( ( sqr `  ( normop `  T )
)  .op  u )  ->  ( ( 0hop  <_op  v  /\  ( v  o.  v
)  =  T )  <-> 
( 0hop  <_op  ( ( sqr `  ( normop `  T ) )  .op  u )  /\  (
( ( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) )  =  T ) ) )
7473rspcev 2884 . . . . 5  |-  ( ( ( ( sqr `  ( normop `  T ) )  .op  u )  e.  HrmOp  /\  ( 0hop  <_op  ( ( sqr `  ( normop `  T ) )  .op  u )  /\  (
( ( sqr `  ( normop `  T ) )  .op  u )  o.  (
( sqr `  ( normop `  T ) )  .op  u ) )  =  T ) )  ->  E. v  e.  HrmOp  ( 0hop  <_op  v  /\  ( v  o.  v )  =  T ) )
7512, 18, 67, 74syl12anc 1180 . . . 4  |-  ( ( ( T  =/=  0hop  /\  u  e.  HrmOp )  /\  ( 0hop  <_op  u  /\  ( u  o.  u
)  =  R ) )  ->  E. v  e.  HrmOp  ( 0hop  <_op  v  /\  ( v  o.  v
)  =  T ) )
7675exp31 587 . . 3  |-  ( T  =/=  0hop  ->  ( u  e.  HrmOp  ->  ( ( 0hop  <_op  u  /\  (
u  o.  u )  =  R )  ->  E. v  e.  HrmOp  ( 0hop  <_op  v  /\  ( v  o.  v )  =  T ) ) ) )
7776rexlimdv 2666 . 2  |-  ( T  =/=  0hop  ->  ( E. u  e.  HrmOp  ( 0hop  <_op  u  /\  ( u  o.  u )  =  R )  ->  E. v  e.  HrmOp  ( 0hop  <_op  v  /\  ( v  o.  v
)  =  T ) ) )
781, 77mpd 14 1  |-  ( T  =/=  0hop  ->  E. v  e.  HrmOp  ( 0hop  <_op  v  /\  ( v  o.  v
)  =  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   class class class wbr 4023    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    x. cmul 8742    <_ cle 8868    / cdiv 9423   sqrcsqr 11718   ~Hchil 21499    .op chot 21519   0hopch0o 21523   normopcnop 21525   LinOpclo 21527   HrmOpcho 21530    <_op cleo 21538
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cc 8061  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817  ax-hilex 21579  ax-hfvadd 21580  ax-hvcom 21581  ax-hvass 21582  ax-hv0cl 21583  ax-hvaddid 21584  ax-hfvmul 21585  ax-hvmulid 21586  ax-hvmulass 21587  ax-hvdistr1 21588  ax-hvdistr2 21589  ax-hvmul0 21590  ax-hfi 21658  ax-his1 21661  ax-his2 21662  ax-his3 21663  ax-his4 21664  ax-hcompl 21781
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-cn 16957  df-cnp 16958  df-lm 16959  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cfil 18681  df-cau 18682  df-cmet 18683  df-grpo 20858  df-gid 20859  df-ginv 20860  df-gdiv 20861  df-ablo 20949  df-subgo 20969  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-vs 21155  df-nmcv 21156  df-ims 21157  df-dip 21274  df-ssp 21298  df-lno 21322  df-nmoo 21323  df-0o 21325  df-ph 21391  df-cbn 21442  df-hnorm 21548  df-hba 21549  df-hvsub 21551  df-hlim 21552  df-hcau 21553  df-sh 21786  df-ch 21801  df-oc 21831  df-ch0 21832  df-shs 21887  df-pjh 21974  df-hosum 22310  df-homul 22311  df-hodif 22312  df-h0op 22328  df-nmop 22419  df-lnop 22421  df-hmop 22424  df-leop 22432
  Copyright terms: Public domain W3C validator