HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  opsqrlem6 Structured version   Unicode version

Theorem opsqrlem6 23641
Description: Lemma for opsqri . (Contributed by NM, 23-Aug-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
opsqrlem2.1  |-  T  e. 
HrmOp
opsqrlem2.2  |-  S  =  ( x  e.  HrmOp ,  y  e.  HrmOp  |->  ( x 
+op  ( ( 1  /  2 )  .op  ( T  -op  ( x  o.  x ) ) ) ) )
opsqrlem2.3  |-  F  =  seq  1 ( S ,  ( NN  X.  { 0hop } ) )
opsqrlem6.4  |-  T  <_op  Iop
Assertion
Ref Expression
opsqrlem6  |-  ( N  e.  NN  ->  ( F `  N )  <_op  Iop  )
Distinct variable group:    x, y, T
Allowed substitution hints:    S( x, y)    F( x, y)    N( x, y)

Proof of Theorem opsqrlem6
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5721 . . 3  |-  ( j  =  1  ->  ( F `  j )  =  ( F ` 
1 ) )
21breq1d 4215 . 2  |-  ( j  =  1  ->  (
( F `  j
)  <_op  Iop  <->  ( F `  1 )  <_op  Iop  ) )
3 fveq2 5721 . . 3  |-  ( j  =  ( k  +  1 )  ->  ( F `  j )  =  ( F `  ( k  +  1 ) ) )
43breq1d 4215 . 2  |-  ( j  =  ( k  +  1 )  ->  (
( F `  j
)  <_op  Iop  <->  ( F `  ( k  +  1 ) )  <_op  Iop  )
)
5 fveq2 5721 . . 3  |-  ( j  =  N  ->  ( F `  j )  =  ( F `  N ) )
65breq1d 4215 . 2  |-  ( j  =  N  ->  (
( F `  j
)  <_op  Iop  <->  ( F `  N )  <_op  Iop  )
)
7 opsqrlem2.1 . . . 4  |-  T  e. 
HrmOp
8 opsqrlem2.2 . . . 4  |-  S  =  ( x  e.  HrmOp ,  y  e.  HrmOp  |->  ( x 
+op  ( ( 1  /  2 )  .op  ( T  -op  ( x  o.  x ) ) ) ) )
9 opsqrlem2.3 . . . 4  |-  F  =  seq  1 ( S ,  ( NN  X.  { 0hop } ) )
107, 8, 9opsqrlem2 23637 . . 3  |-  ( F `
 1 )  = 
0hop
11 idleop 23627 . . 3  |-  0hop  <_op  Iop
1210, 11eqbrtri 4224 . 2  |-  ( F `
 1 )  <_op  Iop
13 idhmop 23478 . . . . . . . 8  |-  Iop  e.  HrmOp
147, 8, 9opsqrlem4 23639 . . . . . . . . 9  |-  F : NN
--> HrmOp
1514ffvelrni 5862 . . . . . . . 8  |-  ( k  e.  NN  ->  ( F `  k )  e.  HrmOp )
16 hmopd 23518 . . . . . . . 8  |-  ( (  Iop  e.  HrmOp  /\  ( F `  k )  e.  HrmOp )  ->  (  Iop  -op  ( F `  k ) )  e. 
HrmOp )
1713, 15, 16sylancr 645 . . . . . . 7  |-  ( k  e.  NN  ->  (  Iop  -op  ( F `  k ) )  e. 
HrmOp )
18 eqid 2436 . . . . . . . 8  |-  ( (  Iop  -op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  =  ( (  Iop  -op  ( F `  k )
)  o.  (  Iop 
-op  ( F `  k ) ) )
19 hmopco 23519 . . . . . . . 8  |-  ( ( (  Iop  -op  ( F `  k )
)  e.  HrmOp  /\  (  Iop  -op  ( F `  k ) )  e. 
HrmOp  /\  ( (  Iop 
-op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  =  ( (  Iop  -op  ( F `  k )
)  o.  (  Iop 
-op  ( F `  k ) ) ) )  ->  ( (  Iop  -op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  e.  HrmOp )
2018, 19mp3an3 1268 . . . . . . 7  |-  ( ( (  Iop  -op  ( F `  k )
)  e.  HrmOp  /\  (  Iop  -op  ( F `  k ) )  e. 
HrmOp )  ->  ( (  Iop  -op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  e.  HrmOp )
2117, 17, 20syl2anc 643 . . . . . 6  |-  ( k  e.  NN  ->  (
(  Iop  -op  ( F `
 k ) )  o.  (  Iop  -op  ( F `  k ) ) )  e.  HrmOp )
22 leopsq 23625 . . . . . . 7  |-  ( (  Iop  -op  ( F `  k ) )  e. 
HrmOp  ->  0hop  <_op  ( (  Iop  -op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) ) )
2317, 22syl 16 . . . . . 6  |-  ( k  e.  NN  ->  0hop  <_op  (
(  Iop  -op  ( F `
 k ) )  o.  (  Iop  -op  ( F `  k ) ) ) )
24 opsqrlem6.4 . . . . . . . 8  |-  T  <_op  Iop
25 leop3 23621 . . . . . . . . 9  |-  ( ( T  e.  HrmOp  /\  Iop  e.  HrmOp )  ->  ( T  <_op  Iop  <->  0hop  <_op  (  Iop  -op 
T ) ) )
267, 13, 25mp2an 654 . . . . . . . 8  |-  ( T 
<_op  Iop  <->  0hop  <_op  (  Iop  -op 
T ) )
2724, 26mpbi 200 . . . . . . 7  |-  0hop  <_op  (  Iop  -op  T )
28 hmopd 23518 . . . . . . . . 9  |-  ( (  Iop  e.  HrmOp  /\  T  e.  HrmOp )  ->  (  Iop  -op  T )  e. 
HrmOp )
2913, 7, 28mp2an 654 . . . . . . . 8  |-  (  Iop 
-op  T )  e. 
HrmOp
30 leopadd 23628 . . . . . . . 8  |-  ( ( ( ( (  Iop 
-op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  e.  HrmOp  /\  (  Iop  -op  T
)  e.  HrmOp )  /\  ( 0hop  <_op  ( (  Iop  -op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  /\  0hop  <_op 
(  Iop  -op  T ) ) )  ->  0hop  <_op  (
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) ) 
+op  (  Iop  -op  T ) ) )
3129, 30mpanl2 663 . . . . . . 7  |-  ( ( ( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) )  e.  HrmOp  /\  ( 0hop  <_op 
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) )  /\  0hop  <_op  (  Iop 
-op  T ) ) )  ->  0hop  <_op  (
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) ) 
+op  (  Iop  -op  T ) ) )
3227, 31mpanr2 666 . . . . . 6  |-  ( ( ( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) )  e.  HrmOp  /\  0hop  <_op  (
(  Iop  -op  ( F `
 k ) )  o.  (  Iop  -op  ( F `  k ) ) ) )  ->  0hop  <_op  ( ( (  Iop  -op  ( F `  k ) )  o.  (  Iop  -op  ( F `  k )
) )  +op  (  Iop  -op  T ) ) )
3321, 23, 32syl2anc 643 . . . . 5  |-  ( k  e.  NN  ->  0hop  <_op  (
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) ) 
+op  (  Iop  -op  T ) ) )
34 2cn 10063 . . . . . . . . . 10  |-  2  e.  CC
35 hmopf 23370 . . . . . . . . . . 11  |-  ( ( F `  k )  e.  HrmOp  ->  ( F `  k ) : ~H --> ~H )
3615, 35syl 16 . . . . . . . . . 10  |-  ( k  e.  NN  ->  ( F `  k ) : ~H --> ~H )
37 homulcl 23255 . . . . . . . . . 10  |-  ( ( 2  e.  CC  /\  ( F `  k ) : ~H --> ~H )  ->  ( 2  .op  ( F `  k )
) : ~H --> ~H )
3834, 36, 37sylancr 645 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
2  .op  ( F `  k ) ) : ~H --> ~H )
39 hmopf 23370 . . . . . . . . . . 11  |-  ( T  e.  HrmOp  ->  T : ~H
--> ~H )
407, 39ax-mp 8 . . . . . . . . . 10  |-  T : ~H
--> ~H
41 fco 5593 . . . . . . . . . . 11  |-  ( ( ( F `  k
) : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H )  ->  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H )
4236, 36, 41syl2anc 643 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( F `  k
)  o.  ( F `
 k ) ) : ~H --> ~H )
43 hosubcl 23269 . . . . . . . . . 10  |-  ( ( T : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H )  ->  ( T  -op  (
( F `  k
)  o.  ( F `
 k ) ) ) : ~H --> ~H )
4440, 42, 43sylancr 645 . . . . . . . . 9  |-  ( k  e.  NN  ->  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) : ~H --> ~H )
45 hmopf 23370 . . . . . . . . . . . 12  |-  (  Iop 
e.  HrmOp  ->  Iop  : ~H --> ~H )
4613, 45ax-mp 8 . . . . . . . . . . 11  |-  Iop  : ~H
--> ~H
47 homulcl 23255 . . . . . . . . . . 11  |-  ( ( 2  e.  CC  /\  Iop  : ~H --> ~H )  ->  ( 2  .op  Iop  ) : ~H --> ~H )
4834, 46, 47mp2an 654 . . . . . . . . . 10  |-  ( 2 
.op  Iop  ) : ~H --> ~H
49 hosubsub4 23314 . . . . . . . . . 10  |-  ( ( ( 2  .op  Iop  ) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H  /\  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) : ~H --> ~H )  ->  ( ( ( 2 
.op  Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( ( 2  .op 
Iop  )  -op  (
( 2  .op  ( F `  k )
)  +op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) )
5048, 49mp3an1 1266 . . . . . . . . 9  |-  ( ( ( 2  .op  ( F `  k )
) : ~H --> ~H  /\  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) : ~H --> ~H )  ->  ( ( ( 2 
.op  Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( ( 2  .op 
Iop  )  -op  (
( 2  .op  ( F `  k )
)  +op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) )
5138, 44, 50syl2anc 643 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( ( 2  .op 
Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( ( 2  .op 
Iop  )  -op  (
( 2  .op  ( F `  k )
)  +op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) )
52 hosubcl 23269 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H )  ->  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) : ~H --> ~H )
5342, 38, 52syl2anc 643 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) : ~H --> ~H )
54 hoadd32 23279 . . . . . . . . . . . . . . 15  |-  ( (  Iop  : ~H --> ~H  /\  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) : ~H --> ~H  /\  Iop  : ~H --> ~H )  ->  ( (  Iop  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) )  +op  Iop  )  =  ( (  Iop 
+op  Iop  )  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
5546, 46, 54mp3an13 1270 . . . . . . . . . . . . . 14  |-  ( ( ( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) : ~H --> ~H  ->  ( (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) )  +op  Iop  )  =  ( (  Iop 
+op  Iop  )  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
5653, 55syl 16 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  Iop  )  =  ( (  Iop  +op  Iop  )  +op  ( ( ( F `  k )  o.  ( F `  k ) )  -op  ( 2  .op  ( F `  k )
) ) ) )
57 ho2times 23315 . . . . . . . . . . . . . . 15  |-  (  Iop 
: ~H --> ~H  ->  ( 2  .op  Iop  )  =  (  Iop  +op  Iop  ) )
5846, 57ax-mp 8 . . . . . . . . . . . . . 14  |-  ( 2 
.op  Iop  )  =  (  Iop  +op  Iop  )
5958oveq1i 6084 . . . . . . . . . . . . 13  |-  ( ( 2  .op  Iop  )  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) )  =  ( (  Iop  +op  Iop  )  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) )
6056, 59syl6eqr 2486 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  Iop  )  =  ( ( 2  .op  Iop  )  +op  ( ( ( F `  k )  o.  ( F `  k ) )  -op  ( 2  .op  ( F `  k )
) ) ) )
61 hoaddsubass 23311 . . . . . . . . . . . . . 14  |-  ( ( ( 2  .op  Iop  ) : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H )  ->  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( 2 
.op  ( F `  k ) ) )  =  ( ( 2 
.op  Iop  )  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
6248, 61mp3an1 1266 . . . . . . . . . . . . 13  |-  ( ( ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H )  ->  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( 2 
.op  ( F `  k ) ) )  =  ( ( 2 
.op  Iop  )  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
6342, 38, 62syl2anc 643 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( 2 
.op  ( F `  k ) ) )  =  ( ( 2 
.op  Iop  )  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
6460, 63eqtr4d 2471 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  Iop  )  =  ( ( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( 2 
.op  ( F `  k ) ) ) )
6564oveq1d 6089 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( (  Iop  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) )  +op  Iop  )  -op  T )  =  ( ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( 2 
.op  ( F `  k ) ) )  -op  T ) )
66 hoaddcl 23254 . . . . . . . . . . . 12  |-  ( (  Iop  : ~H --> ~H  /\  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) : ~H --> ~H )  ->  (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) : ~H --> ~H )
6746, 53, 66sylancr 645 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (  Iop  +op  ( ( ( F `  k )  o.  ( F `  k ) )  -op  ( 2  .op  ( F `  k )
) ) ) : ~H --> ~H )
68 hoaddsubass 23311 . . . . . . . . . . . 12  |-  ( ( (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) : ~H --> ~H  /\  Iop  : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( ( (  Iop 
+op  ( ( ( F `  k )  o.  ( F `  k ) )  -op  ( 2  .op  ( F `  k )
) ) )  +op  Iop  )  -op  T )  =  ( (  Iop 
+op  ( ( ( F `  k )  o.  ( F `  k ) )  -op  ( 2  .op  ( F `  k )
) ) )  +op  (  Iop  -op  T )
) )
6946, 40, 68mp3an23 1271 . . . . . . . . . . 11  |-  ( (  Iop  +op  ( (
( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) : ~H --> ~H  ->  ( ( (  Iop  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) )  +op  Iop  )  -op  T )  =  ( (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) )  +op  (  Iop 
-op  T ) ) )
7067, 69syl 16 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( (  Iop  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) )  +op  Iop  )  -op  T )  =  ( (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) )  +op  (  Iop 
-op  T ) ) )
71 hoaddcl 23254 . . . . . . . . . . . 12  |-  ( ( ( 2  .op  Iop  ) : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H )  ->  ( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) ) : ~H --> ~H )
7248, 42, 71sylancr 645 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( 2  .op  Iop  )  +op  ( ( F `
 k )  o.  ( F `  k
) ) ) : ~H --> ~H )
73 hosubsub4 23314 . . . . . . . . . . . 12  |-  ( ( ( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) ) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H  /\  T : ~H --> ~H )  ->  ( ( ( ( 2  .op  Iop  )  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
2  .op  ( F `  k ) ) )  -op  T )  =  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
7440, 73mp3an3 1268 . . . . . . . . . . 11  |-  ( ( ( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) ) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H )  ->  ( ( ( ( 2  .op  Iop  )  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
2  .op  ( F `  k ) ) )  -op  T )  =  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
7572, 38, 74syl2anc 643 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( 2 
.op  ( F `  k ) ) )  -op  T )  =  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
7665, 70, 753eqtr3d 2476 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  (  Iop  -op  T ) )  =  ( ( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
77 hosubadd4 23310 . . . . . . . . . . . 12  |-  ( ( ( ( 2  .op 
Iop  ) : ~H --> ~H  /\  ( 2  .op  ( F `  k
) ) : ~H --> ~H )  /\  ( T : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H )
)  ->  ( (
( 2  .op  Iop  )  -op  ( 2  .op  ( F `  k
) ) )  -op  ( T  -op  (
( F `  k
)  o.  ( F `
 k ) ) ) )  =  ( ( ( 2  .op 
Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
7840, 77mpanr1 665 . . . . . . . . . . 11  |-  ( ( ( ( 2  .op 
Iop  ) : ~H --> ~H  /\  ( 2  .op  ( F `  k
) ) : ~H --> ~H )  /\  (
( F `  k
)  o.  ( F `
 k ) ) : ~H --> ~H )  ->  ( ( ( 2 
.op  Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
7948, 78mpanl1 662 . . . . . . . . . 10  |-  ( ( ( 2  .op  ( F `  k )
) : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H )  ->  ( ( ( 2 
.op  Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
8038, 42, 79syl2anc 643 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
( ( 2  .op 
Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( ( ( 2 
.op  Iop  )  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( 2  .op  ( F `
 k ) ) 
+op  T ) ) )
8176, 80eqtr4d 2471 . . . . . . . 8  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  (  Iop  -op  T ) )  =  ( ( ( 2  .op 
Iop  )  -op  (
2  .op  ( F `  k ) ) )  -op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) )
82 2ne0 10076 . . . . . . . . . . . . 13  |-  2  =/=  0
8334, 82reccli 9737 . . . . . . . . . . . 12  |-  ( 1  /  2 )  e.  CC
84 homulcl 23255 . . . . . . . . . . . 12  |-  ( ( ( 1  /  2
)  e.  CC  /\  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) : ~H --> ~H )  ->  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) : ~H --> ~H )
8583, 44, 84sylancr 645 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) : ~H --> ~H )
86 hoadddi 23299 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  ( F `  k ) : ~H --> ~H  /\  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) : ~H --> ~H )  ->  ( 2  .op  (
( F `  k
)  +op  ( (
1  /  2 ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) )  =  ( ( 2  .op  ( F `
 k ) ) 
+op  ( 2  .op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) )
8734, 86mp3an1 1266 . . . . . . . . . . 11  |-  ( ( ( F `  k
) : ~H --> ~H  /\  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) : ~H --> ~H )  ->  ( 2  .op  (
( F `  k
)  +op  ( (
1  /  2 ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) )  =  ( ( 2  .op  ( F `
 k ) ) 
+op  ( 2  .op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) )
8836, 85, 87syl2anc 643 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
2  .op  ( ( F `  k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) )  =  ( ( 2  .op  ( F `  k )
)  +op  ( 2 
.op  ( ( 1  /  2 )  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) ) ) ) )
8934, 82recidi 9738 . . . . . . . . . . . . 13  |-  ( 2  x.  ( 1  / 
2 ) )  =  1
9089oveq1i 6084 . . . . . . . . . . . 12  |-  ( ( 2  x.  ( 1  /  2 ) ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( 1  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) )
91 homulass 23298 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  CC  /\  ( 1  /  2
)  e.  CC  /\  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) : ~H --> ~H )  ->  ( ( 2  x.  ( 1  /  2
) )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) )  =  ( 2  .op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) )
9234, 83, 91mp3an12 1269 . . . . . . . . . . . . 13  |-  ( ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) : ~H --> ~H  ->  ( ( 2  x.  (
1  /  2 ) )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) )  =  ( 2  .op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) )
9344, 92syl 16 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( 2  x.  (
1  /  2 ) )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) )  =  ( 2  .op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) )
94 homulid2 23296 . . . . . . . . . . . . 13  |-  ( ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) : ~H --> ~H  ->  ( 1  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) )  =  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )
9544, 94syl 16 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
1  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( T  -op  (
( F `  k
)  o.  ( F `
 k ) ) ) )
9690, 93, 953eqtr3a 2492 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
2  .op  ( (
1  /  2 ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) )  =  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) )
9796oveq2d 6090 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( 2  .op  ( F `  k )
)  +op  ( 2 
.op  ( ( 1  /  2 )  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) ) ) )  =  ( ( 2  .op  ( F `  k
) )  +op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) )
9888, 97eqtrd 2468 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
2  .op  ( ( F `  k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) )  =  ( ( 2  .op  ( F `  k )
)  +op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) )
9998oveq2d 6090 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( 2  .op  Iop  )  -op  ( 2  .op  ( ( F `  k )  +op  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) ) )  =  ( ( 2  .op  Iop  )  -op  ( ( 2 
.op  ( F `  k ) )  +op  ( T  -op  ( ( F `  k )  o.  ( F `  k ) ) ) ) ) )
10051, 81, 993eqtr4d 2478 . . . . . . 7  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  (  Iop  -op  T ) )  =  ( ( 2  .op  Iop  )  -op  ( 2  .op  ( ( F `  k )  +op  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) ) ) )
101 hoaddcl 23254 . . . . . . . . 9  |-  ( ( ( F `  k
) : ~H --> ~H  /\  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) : ~H --> ~H )  ->  ( ( F `  k )  +op  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) : ~H --> ~H )
10236, 85, 101syl2anc 643 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( F `  k
)  +op  ( (
1  /  2 ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) : ~H --> ~H )
103 hosubdi 23304 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  Iop  : ~H --> ~H  /\  ( ( F `  k )  +op  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) : ~H --> ~H )  ->  ( 2  .op  (  Iop  -op  ( ( F `
 k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) )  =  ( ( 2  .op 
Iop  )  -op  (
2  .op  ( ( F `  k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) ) )
10434, 46, 103mp3an12 1269 . . . . . . . 8  |-  ( ( ( F `  k
)  +op  ( (
1  /  2 ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) : ~H --> ~H  ->  ( 2  .op  (  Iop 
-op  ( ( F `
 k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) )  =  ( ( 2  .op 
Iop  )  -op  (
2  .op  ( ( F `  k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) ) )
105102, 104syl 16 . . . . . . 7  |-  ( k  e.  NN  ->  (
2  .op  (  Iop  -op  ( ( F `  k )  +op  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) ) )  =  ( ( 2  .op  Iop  )  -op  ( 2  .op  ( ( F `  k )  +op  (
( 1  /  2
)  .op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) ) ) )
106100, 105eqtr4d 2471 . . . . . 6  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( ( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) 
+op  (  Iop  -op  T ) )  =  ( 2  .op  (  Iop 
-op  ( ( F `
 k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) ) )
107 hosubcl 23269 . . . . . . . . . 10  |-  ( (  Iop  : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H )  ->  (  Iop  -op  ( F `  k )
) : ~H --> ~H )
10846, 36, 107sylancr 645 . . . . . . . . 9  |-  ( k  e.  NN  ->  (  Iop  -op  ( F `  k ) ) : ~H --> ~H )
109 hocsubdir 23281 . . . . . . . . . 10  |-  ( (  Iop  : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H  /\  (  Iop  -op  ( F `  k ) ) : ~H --> ~H )  -> 
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) )  =  ( (  Iop 
o.  (  Iop  -op  ( F `  k ) ) )  -op  (
( F `  k
)  o.  (  Iop 
-op  ( F `  k ) ) ) ) )
11046, 109mp3an1 1266 . . . . . . . . 9  |-  ( ( ( F `  k
) : ~H --> ~H  /\  (  Iop  -op  ( F `  k ) ) : ~H --> ~H )  -> 
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) )  =  ( (  Iop 
o.  (  Iop  -op  ( F `  k ) ) )  -op  (
( F `  k
)  o.  (  Iop 
-op  ( F `  k ) ) ) ) )
11136, 108, 110syl2anc 643 . . . . . . . 8  |-  ( k  e.  NN  ->  (
(  Iop  -op  ( F `
 k ) )  o.  (  Iop  -op  ( F `  k ) ) )  =  ( (  Iop  o.  (  Iop  -op  ( F `  k ) ) )  -op  ( ( F `
 k )  o.  (  Iop  -op  ( F `  k )
) ) ) )
112 hmoplin 23438 . . . . . . . . . . . . . . 15  |-  (  Iop 
e.  HrmOp  ->  Iop  e.  LinOp )
11313, 112ax-mp 8 . . . . . . . . . . . . . 14  |-  Iop  e.  LinOp
114 hoddi 23486 . . . . . . . . . . . . . 14  |-  ( (  Iop  e.  LinOp  /\  Iop  : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H )  -> 
(  Iop  o.  (  Iop  -op  ( F `  k ) ) )  =  ( (  Iop 
o.  Iop  )  -op  (  Iop  o.  ( F `
 k ) ) ) )
115113, 46, 114mp3an12 1269 . . . . . . . . . . . . 13  |-  ( ( F `  k ) : ~H --> ~H  ->  (  Iop  o.  (  Iop 
-op  ( F `  k ) ) )  =  ( (  Iop 
o.  Iop  )  -op  (  Iop  o.  ( F `
 k ) ) ) )
11636, 115syl 16 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (  Iop  o.  (  Iop  -op  ( F `  k ) ) )  =  ( (  Iop  o.  Iop  )  -op  (  Iop  o.  ( F `  k ) ) ) )
11746hoid1i 23285 . . . . . . . . . . . . . 14  |-  (  Iop 
o.  Iop  )  =  Iop
118117a1i 11 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (  Iop  o.  Iop  )  =  Iop  )
119 hoico2 23253 . . . . . . . . . . . . . 14  |-  ( ( F `  k ) : ~H --> ~H  ->  (  Iop  o.  ( F `
 k ) )  =  ( F `  k ) )
12036, 119syl 16 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (  Iop  o.  ( F `  k ) )  =  ( F `  k
) )
121118, 120oveq12d 6092 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
(  Iop  o.  Iop  )  -op  (  Iop  o.  ( F `  k ) ) )  =  (  Iop  -op  ( F `  k ) ) )
122116, 121eqtrd 2468 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (  Iop  o.  (  Iop  -op  ( F `  k ) ) )  =  (  Iop  -op  ( F `  k ) ) )
123 hmoplin 23438 . . . . . . . . . . . . . 14  |-  ( ( F `  k )  e.  HrmOp  ->  ( F `  k )  e.  LinOp )
12415, 123syl 16 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  ( F `  k )  e.  LinOp )
125 hoddi 23486 . . . . . . . . . . . . . 14  |-  ( ( ( F `  k
)  e.  LinOp  /\  Iop  : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H )  -> 
( ( F `  k )  o.  (  Iop  -op  ( F `  k ) ) )  =  ( ( ( F `  k )  o.  Iop  )  -op  ( ( F `  k )  o.  ( F `  k )
) ) )
12646, 125mp3an2 1267 . . . . . . . . . . . . 13  |-  ( ( ( F `  k
)  e.  LinOp  /\  ( F `  k ) : ~H --> ~H )  -> 
( ( F `  k )  o.  (  Iop  -op  ( F `  k ) ) )  =  ( ( ( F `  k )  o.  Iop  )  -op  ( ( F `  k )  o.  ( F `  k )
) ) )
127124, 36, 126syl2anc 643 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( F `  k
)  o.  (  Iop 
-op  ( F `  k ) ) )  =  ( ( ( F `  k )  o.  Iop  )  -op  ( ( F `  k )  o.  ( F `  k )
) ) )
128 hoico1 23252 . . . . . . . . . . . . . 14  |-  ( ( F `  k ) : ~H --> ~H  ->  ( ( F `  k
)  o.  Iop  )  =  ( F `  k ) )
12936, 128syl 16 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  (
( F `  k
)  o.  Iop  )  =  ( F `  k ) )
130129oveq1d 6089 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( ( F `  k )  o.  Iop  )  -op  ( ( F `
 k )  o.  ( F `  k
) ) )  =  ( ( F `  k )  -op  (
( F `  k
)  o.  ( F `
 k ) ) ) )
131127, 130eqtrd 2468 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( F `  k
)  o.  (  Iop 
-op  ( F `  k ) ) )  =  ( ( F `
 k )  -op  ( ( F `  k )  o.  ( F `  k )
) ) )
132122, 131oveq12d 6092 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
(  Iop  o.  (  Iop  -op  ( F `  k ) ) )  -op  ( ( F `
 k )  o.  (  Iop  -op  ( F `  k )
) ) )  =  ( (  Iop  -op  ( F `  k ) )  -op  ( ( F `  k )  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) )
13336, 46jctil 524 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (  Iop  : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H )
)
134 hosubadd4 23310 . . . . . . . . . . 11  |-  ( ( (  Iop  : ~H --> ~H  /\  ( F `  k ) : ~H --> ~H )  /\  (
( F `  k
) : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H )
)  ->  ( (  Iop  -op  ( F `  k ) )  -op  ( ( F `  k )  -op  (
( F `  k
)  o.  ( F `
 k ) ) ) )  =  ( (  Iop  +op  (
( F `  k
)  o.  ( F `
 k ) ) )  -op  ( ( F `  k ) 
+op  ( F `  k ) ) ) )
135133, 36, 42, 134syl12anc 1182 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
(  Iop  -op  ( F `
 k ) )  -op  ( ( F `
 k )  -op  ( ( F `  k )  o.  ( F `  k )
) ) )  =  ( (  Iop  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
( F `  k
)  +op  ( F `  k ) ) ) )
136132, 135eqtrd 2468 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
(  Iop  o.  (  Iop  -op  ( F `  k ) ) )  -op  ( ( F `
 k )  o.  (  Iop  -op  ( F `  k )
) ) )  =  ( (  Iop  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
( F `  k
)  +op  ( F `  k ) ) ) )
137 ho2times 23315 . . . . . . . . . . 11  |-  ( ( F `  k ) : ~H --> ~H  ->  ( 2  .op  ( F `
 k ) )  =  ( ( F `
 k )  +op  ( F `  k ) ) )
13836, 137syl 16 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
2  .op  ( F `  k ) )  =  ( ( F `  k )  +op  ( F `  k )
) )
139138oveq2d 6090 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( F `  k )  o.  ( F `  k ) ) )  -op  ( 2  .op  ( F `  k
) ) )  =  ( (  Iop  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
( F `  k
)  +op  ( F `  k ) ) ) )
140 hoaddsubass 23311 . . . . . . . . . . 11  |-  ( (  Iop  : ~H --> ~H  /\  ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H )  ->  ( (  Iop  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
2  .op  ( F `  k ) ) )  =  (  Iop  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) ) )
14146, 140mp3an1 1266 . . . . . . . . . 10  |-  ( ( ( ( F `  k )  o.  ( F `  k )
) : ~H --> ~H  /\  ( 2  .op  ( F `  k )
) : ~H --> ~H )  ->  ( (  Iop  +op  ( ( F `  k )  o.  ( F `  k )
) )  -op  (
2  .op  ( F `  k ) ) )  =  (  Iop  +op  ( ( ( F `
 k )  o.  ( F `  k
) )  -op  (
2  .op  ( F `  k ) ) ) ) )
14242, 38, 141syl2anc 643 . . . . . . . . 9  |-  ( k  e.  NN  ->  (
(  Iop  +op  ( ( F `  k )  o.  ( F `  k ) ) )  -op  ( 2  .op  ( F `  k
) ) )  =  (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
143136, 139, 1423eqtr2d 2474 . . . . . . . 8  |-  ( k  e.  NN  ->  (
(  Iop  o.  (  Iop  -op  ( F `  k ) ) )  -op  ( ( F `
 k )  o.  (  Iop  -op  ( F `  k )
) ) )  =  (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) ) )
144111, 143eqtrd 2468 . . . . . . 7  |-  ( k  e.  NN  ->  (
(  Iop  -op  ( F `
 k ) )  o.  (  Iop  -op  ( F `  k ) ) )  =  (  Iop  +op  ( (
( F `  k
)  o.  ( F `
 k ) )  -op  ( 2  .op  ( F `  k
) ) ) ) )
145144oveq1d 6089 . . . . . 6  |-  ( k  e.  NN  ->  (
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) ) 
+op  (  Iop  -op  T ) )  =  ( (  Iop  +op  (
( ( F `  k )  o.  ( F `  k )
)  -op  ( 2 
.op  ( F `  k ) ) ) )  +op  (  Iop 
-op  T ) ) )
1467, 8, 9opsqrlem5 23640 . . . . . . . 8  |-  ( k  e.  NN  ->  ( F `  ( k  +  1 ) )  =  ( ( F `
 k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) )
147146oveq2d 6090 . . . . . . 7  |-  ( k  e.  NN  ->  (  Iop  -op  ( F `  ( k  +  1 ) ) )  =  (  Iop  -op  (
( F `  k
)  +op  ( (
1  /  2 ) 
.op  ( T  -op  ( ( F `  k )  o.  ( F `  k )
) ) ) ) ) )
148147oveq2d 6090 . . . . . 6  |-  ( k  e.  NN  ->  (
2  .op  (  Iop  -op  ( F `  (
k  +  1 ) ) ) )  =  ( 2  .op  (  Iop  -op  ( ( F `
 k )  +op  ( ( 1  / 
2 )  .op  ( T  -op  ( ( F `
 k )  o.  ( F `  k
) ) ) ) ) ) ) )
149106, 145, 1483eqtr4d 2478 . . . . 5  |-  ( k  e.  NN  ->  (
( (  Iop  -op  ( F `  k ) )  o.  (  Iop 
-op  ( F `  k ) ) ) 
+op  (  Iop  -op  T ) )  =  ( 2  .op  (  Iop 
-op  ( F `  ( k  +  1 ) ) ) ) )
15033, 149breqtrd 4229 . . . 4  |-  ( k  e.  NN  ->  0hop  <_op  (
2  .op  (  Iop  -op  ( F `  (
k  +  1 ) ) ) ) )
151 peano2nn 10005 . . . . . . 7  |-  ( k  e.  NN  ->  (
k  +  1 )  e.  NN )
15214ffvelrni 5862 . . . . . . 7  |-  ( ( k  +  1 )  e.  NN  ->  ( F `  ( k  +  1 ) )  e.  HrmOp )
153151, 152syl 16 . . . . . 6  |-  ( k  e.  NN  ->  ( F `  ( k  +  1 ) )  e.  HrmOp )
154 hmopd 23518 . . . . . 6  |-  ( (  Iop  e.  HrmOp  /\  ( F `  ( k  +  1 ) )  e.  HrmOp )  ->  (  Iop  -op  ( F `  ( k  +  1 ) ) )  e. 
HrmOp )
15513, 153, 154sylancr 645 . . . . 5  |-  ( k  e.  NN  ->  (  Iop  -op  ( F `  ( k  +  1 ) ) )  e. 
HrmOp )
156 2re 10062 . . . . . 6  |-  2  e.  RR
157 2pos 10075 . . . . . 6  |-  0  <  2
158 leopmul 23630 . . . . . 6  |-  ( ( 2  e.  RR  /\  (  Iop  -op  ( F `  ( k  +  1 ) ) )  e. 
HrmOp  /\  0  <  2
)  ->  ( 0hop  <_op 
(  Iop  -op  ( F `
 ( k  +  1 ) ) )  <->  0hop  <_op  ( 2  .op  (  Iop  -op  ( F `  ( k  +  1 ) ) ) ) ) )
159156, 157, 158mp3an13 1270 . . . . 5  |-  ( (  Iop  -op  ( F `  ( k  +  1 ) ) )  e. 
HrmOp  ->  ( 0hop  <_op  (  Iop  -op  ( F `  ( k  +  1 ) ) )  <->  0hop  <_op  (
2  .op  (  Iop  -op  ( F `  (
k  +  1 ) ) ) ) ) )
160155, 159syl 16 . . . 4  |-  ( k  e.  NN  ->  ( 0hop  <_op  (  Iop  -op  ( F `  ( k  +  1 ) ) )  <->  0hop  <_op  ( 2 
.op  (  Iop  -op  ( F `  ( k  +  1 ) ) ) ) ) )
161150, 160mpbird 224 . . 3  |-  ( k  e.  NN  ->  0hop  <_op  (  Iop  -op  ( F `  ( k  +  1 ) ) ) )
162 leop3 23621 . . . 4  |-  ( ( ( F `  (
k  +  1 ) )  e.  HrmOp  /\  Iop  e.  HrmOp )  ->  (
( F `  (
k  +  1 ) )  <_op  Iop  <->  0hop  <_op  (  Iop  -op  ( F `  ( k  +  1 ) ) ) ) )
163153, 13, 162sylancl 644 . . 3  |-  ( k  e.  NN  ->  (
( F `  (
k  +  1 ) )  <_op  Iop  <->  0hop  <_op  (  Iop  -op  ( F `  ( k  +  1 ) ) ) ) )
164161, 163mpbird 224 . 2  |-  ( k  e.  NN  ->  ( F `  ( k  +  1 ) ) 
<_op  Iop  )
1652, 4, 6, 12, 164nn1suc 10014 1  |-  ( N  e.  NN  ->  ( F `  N )  <_op  Iop  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   {csn 3807   class class class wbr 4205    X. cxp 4869    o. ccom 4875   -->wf 5443   ` cfv 5447  (class class class)co 6074    e. cmpt2 6076   CCcc 8981   RRcr 8982   0cc0 8983   1c1 8984    + caddc 8986    x. cmul 8988    < clt 9113    / cdiv 9670   NNcn 9993   2c2 10042    seq cseq 11316   ~Hchil 22415    +op chos 22434    .op chot 22435    -op chod 22436   0hopch0o 22439    Iop chio 22440   LinOpclo 22443   HrmOpcho 22446    <_op cleo 22454
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-inf2 7589  ax-cc 8308  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060  ax-pre-sup 9061  ax-addf 9062  ax-mulf 9063  ax-hilex 22495  ax-hfvadd 22496  ax-hvcom 22497  ax-hvass 22498  ax-hv0cl 22499  ax-hvaddid 22500  ax-hfvmul 22501  ax-hvmulid 22502  ax-hvmulass 22503  ax-hvdistr1 22504  ax-hvdistr2 22505  ax-hvmul0 22506  ax-hfi 22574  ax-his1 22577  ax-his2 22578  ax-his3 22579  ax-his4 22580  ax-hcompl 22697
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-int 4044  df-iun 4088  df-iin 4089  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-se 4535  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-isom 5456  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-of 6298  df-1st 6342  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-1o 6717  df-2o 6718  df-oadd 6721  df-omul 6722  df-er 6898  df-map 7013  df-pm 7014  df-ixp 7057  df-en 7103  df-dom 7104  df-sdom 7105  df-fin 7106  df-fi 7409  df-sup 7439  df-oi 7472  df-card 7819  df-acn 7822  df-cda 8041  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-div 9671  df-nn 9994  df-2 10051  df-3 10052  df-4 10053  df-5 10054  df-6 10055  df-7 10056  df-8 10057  df-9 10058  df-10 10059  df-n0 10215  df-z 10276  df-dec 10376  df-uz 10482  df-q 10568  df-rp 10606  df-xneg 10703  df-xadd 10704  df-xmul 10705  df-ioo 10913  df-ico 10915  df-icc 10916  df-fz 11037  df-fzo 11129  df-fl 11195  df-seq 11317  df-exp 11376  df-hash 11612  df-cj 11897  df-re 11898  df-im 11899  df-sqr 12033  df-abs 12034  df-clim 12275  df-rlim 12276  df-sum 12473  df-struct 13464  df-ndx 13465  df-slot 13466  df-base 13467  df-sets 13468  df-ress 13469  df-plusg 13535  df-mulr 13536  df-starv 13537  df-sca 13538  df-vsca 13539  df-tset 13541  df-ple 13542  df-ds 13544  df-unif 13545  df-hom 13546  df-cco 13547  df-rest 13643  df-topn 13644  df-topgen 13660  df-pt 13661  df-prds 13664  df-xrs 13719  df-0g 13720  df-gsum 13721  df-qtop 13726  df-imas 13727  df-xps 13729  df-mre 13804  df-mrc 13805  df-acs 13807  df-mnd 14683  df-submnd 14732  df-mulg 14808  df-cntz 15109  df-cmn 15407  df-psmet 16687  df-xmet 16688  df-met 16689  df-bl 16690  df-mopn 16691  df-fbas 16692  df-fg 16693  df-cnfld 16697  df-top 16956  df-bases 16958  df-topon 16959  df-topsp 16960  df-cld 17076  df-ntr 17077  df-cls 17078  df-nei 17155  df-cn 17284  df-cnp 17285  df-lm 17286  df-haus 17372  df-tx 17587  df-hmeo 17780  df-fil 17871  df-fm 17963  df-flim 17964  df-flf 17965  df-xms 18343  df-ms 18344  df-tms 18345  df-cfil 19201  df-cau 19202  df-cmet 19203  df-grpo 21772  df-gid 21773  df-ginv 21774  df-gdiv 21775  df-ablo 21863  df-subgo 21883  df-vc 22018  df-nv 22064  df-va 22067  df-ba 22068  df-sm 22069  df-0v 22070  df-vs 22071  df-nmcv 22072  df-ims 22073  df-dip 22190  df-ssp 22214  df-ph 22307  df-cbn 22358  df-hnorm 22464  df-hba 22465  df-hvsub 22467  df-hlim 22468  df-hcau 22469  df-sh 22702  df-ch 22717  df-oc 22747  df-ch0 22748  df-shs 22803  df-pjh 22890  df-hosum 23226  df-homul 23227  df-hodif 23228  df-h0op 23244  df-iop 23245  df-lnop 23337  df-hmop 23340  df-leop 23348
  Copyright terms: Public domain W3C validator