MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrbaslem Unicode version

Theorem opsrbaslem 16219
Description: Get a component of the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
opsrbas.s  |-  S  =  ( I mPwSer  R )
opsrbas.o  |-  O  =  ( ( I ordPwSer  R
) `  T )
opsrbas.t  |-  ( ph  ->  T  C_  ( I  X.  I ) )
opsrbaslem.1  |-  E  = Slot 
N
opsrbaslem.2  |-  N  e.  NN
opsrbaslem.3  |-  N  < 
10
Assertion
Ref Expression
opsrbaslem  |-  ( ph  ->  ( E `  S
)  =  ( E `
 O ) )

Proof of Theorem opsrbaslem
StepHypRef Expression
1 opsrbas.s . . . . 5  |-  S  =  ( I mPwSer  R )
2 opsrbas.o . . . . 5  |-  O  =  ( ( I ordPwSer  R
) `  T )
3 eqid 2283 . . . . 5  |-  ( le
`  O )  =  ( le `  O
)
4 simprl 732 . . . . 5  |-  ( (
ph  /\  ( I  e.  _V  /\  R  e. 
_V ) )  ->  I  e.  _V )
5 simprr 733 . . . . 5  |-  ( (
ph  /\  ( I  e.  _V  /\  R  e. 
_V ) )  ->  R  e.  _V )
6 opsrbas.t . . . . . 6  |-  ( ph  ->  T  C_  ( I  X.  I ) )
76adantr 451 . . . . 5  |-  ( (
ph  /\  ( I  e.  _V  /\  R  e. 
_V ) )  ->  T  C_  ( I  X.  I ) )
81, 2, 3, 4, 5, 7opsrval2 16218 . . . 4  |-  ( (
ph  /\  ( I  e.  _V  /\  R  e. 
_V ) )  ->  O  =  ( S sSet  <.
( le `  ndx ) ,  ( le `  O ) >. )
)
98fveq2d 5529 . . 3  |-  ( (
ph  /\  ( I  e.  _V  /\  R  e. 
_V ) )  -> 
( E `  O
)  =  ( E `
 ( S sSet  <. ( le `  ndx ) ,  ( le `  O ) >. )
) )
10 opsrbaslem.1 . . . . 5  |-  E  = Slot 
N
11 opsrbaslem.2 . . . . 5  |-  N  e.  NN
1210, 11ndxid 13169 . . . 4  |-  E  = Slot  ( E `  ndx )
1311nnrei 9755 . . . . . 6  |-  N  e.  RR
14 opsrbaslem.3 . . . . . 6  |-  N  < 
10
1513, 14ltneii 8931 . . . . 5  |-  N  =/= 
10
1610, 11ndxarg 13168 . . . . . 6  |-  ( E `
 ndx )  =  N
17 plendx 13300 . . . . . 6  |-  ( le
`  ndx )  =  10
1816, 17neeq12i 2458 . . . . 5  |-  ( ( E `  ndx )  =/=  ( le `  ndx ) 
<->  N  =/=  10 )
1915, 18mpbir 200 . . . 4  |-  ( E `
 ndx )  =/=  ( le `  ndx )
2012, 19setsnid 13188 . . 3  |-  ( E `
 S )  =  ( E `  ( S sSet  <. ( le `  ndx ) ,  ( le
`  O ) >.
) )
219, 20syl6reqr 2334 . 2  |-  ( (
ph  /\  ( I  e.  _V  /\  R  e. 
_V ) )  -> 
( E `  S
)  =  ( E `
 O ) )
22 fv01 5559 . . . . . . 7  |-  ( (/) `  T )  =  (/)
2322eqcomi 2287 . . . . . 6  |-  (/)  =  (
(/) `  T )
24 reldmpsr 16109 . . . . . . 7  |-  Rel  dom mPwSer
2524ovprc 5885 . . . . . 6  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I mPwSer  R )  =  (/) )
26 reldmopsr 16215 . . . . . . . 8  |-  Rel  dom ordPwSer
2726ovprc 5885 . . . . . . 7  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I ordPwSer  R )  =  (/) )
2827fveq1d 5527 . . . . . 6  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( ( I ordPwSer  R
) `  T )  =  ( (/) `  T
) )
2923, 25, 283eqtr4a 2341 . . . . 5  |-  ( -.  ( I  e.  _V  /\  R  e.  _V )  ->  ( I mPwSer  R )  =  ( ( I ordPwSer  R ) `  T
) )
3029adantl 452 . . . 4  |-  ( (
ph  /\  -.  (
I  e.  _V  /\  R  e.  _V )
)  ->  ( I mPwSer  R )  =  ( ( I ordPwSer  R ) `  T
) )
3130, 1, 23eqtr4g 2340 . . 3  |-  ( (
ph  /\  -.  (
I  e.  _V  /\  R  e.  _V )
)  ->  S  =  O )
3231fveq2d 5529 . 2  |-  ( (
ph  /\  -.  (
I  e.  _V  /\  R  e.  _V )
)  ->  ( E `  S )  =  ( E `  O ) )
3321, 32pm2.61dan 766 1  |-  ( ph  ->  ( E `  S
)  =  ( E `
 O ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   _Vcvv 2788    C_ wss 3152   (/)c0 3455   <.cop 3643   class class class wbr 4023    X. cxp 4687   ` cfv 5255  (class class class)co 5858    < clt 8867   NNcn 9746   10c10 9803   ndxcnx 13145   sSet csts 13146  Slot cslot 13147   lecple 13215   mPwSer cmps 16087   ordPwSer copws 16095
This theorem is referenced by:  opsrbas  16220  opsrplusg  16221  opsrmulr  16222  opsrvsca  16223  opsrsca  16224
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-i2m1 8805  ax-1ne0 8806  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-ltxr 8872  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ple 13228  df-psr 16098  df-opsr 16106
  Copyright terms: Public domain W3C validator