MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrtoslem1 Structured version   Unicode version

Theorem opsrtoslem1 16544
Description: Lemma for opsrtos 16546. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
opsrso.o  |-  O  =  ( ( I ordPwSer  R
) `  T )
opsrso.i  |-  ( ph  ->  I  e.  V )
opsrso.r  |-  ( ph  ->  R  e. Toset )
opsrso.t  |-  ( ph  ->  T  C_  ( I  X.  I ) )
opsrso.w  |-  ( ph  ->  T  We  I )
opsrtoslem.s  |-  S  =  ( I mPwSer  R )
opsrtoslem.b  |-  B  =  ( Base `  S
)
opsrtoslem.q  |-  .<  =  ( lt `  R )
opsrtoslem.c  |-  C  =  ( T  <bag  I )
opsrtoslem.d  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
opsrtoslem.ps  |-  ( ps  <->  E. z  e.  D  ( ( x `  z
)  .<  ( y `  z )  /\  A. w  e.  D  (
w C z  -> 
( x `  w
)  =  ( y `
 w ) ) ) )
opsrtoslem.l  |-  .<_  =  ( le `  O )
Assertion
Ref Expression
opsrtoslem1  |-  ( ph  -> 
.<_  =  ( ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  u.  (  _I  |`  B ) ) )
Distinct variable groups:    x, y, B    x, w, y, z, C    w, h, x, y, z, I    ph, w, x, y, z    w, D, x, y, z    w,  .< , x, y, z    w, R, x, y, z    w, T, x, y, z
Allowed substitution hints:    ph( h)    ps( x, y, z, w, h)    B( z, w, h)    C( h)    D( h)    R( h)    S( x, y, z, w, h)    .< ( h)    T( h)    .<_ ( x, y, z, w, h)    O( x, y, z, w, h)    V( x, y, z, w, h)

Proof of Theorem opsrtoslem1
StepHypRef Expression
1 opsrtoslem.s . . 3  |-  S  =  ( I mPwSer  R )
2 opsrso.o . . 3  |-  O  =  ( ( I ordPwSer  R
) `  T )
3 opsrtoslem.b . . 3  |-  B  =  ( Base `  S
)
4 opsrtoslem.q . . 3  |-  .<  =  ( lt `  R )
5 opsrtoslem.c . . 3  |-  C  =  ( T  <bag  I )
6 opsrtoslem.d . . 3  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
7 opsrtoslem.l . . 3  |-  .<_  =  ( le `  O )
8 opsrso.t . . 3  |-  ( ph  ->  T  C_  ( I  X.  I ) )
91, 2, 3, 4, 5, 6, 7, 8opsrle 16536 . 2  |-  ( ph  -> 
.<_  =  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) } )
10 unopab 4284 . . 3  |-  ( {
<. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ps ) }  u.  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  x  =  y ) } )  =  { <. x ,  y >.  |  ( ( { x ,  y } 
C_  B  /\  ps )  \/  ( {
x ,  y } 
C_  B  /\  x  =  y ) ) }
11 inopab 5005 . . . . 5  |-  ( {
<. x ,  y >.  |  ps }  i^i  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  B ) } )  =  { <. x ,  y >.  |  ( ps  /\  ( x  e.  B  /\  y  e.  B ) ) }
12 df-xp 4884 . . . . . 6  |-  ( B  X.  B )  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  B ) }
1312ineq2i 3539 . . . . 5  |-  ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  =  ( { <. x ,  y >.  |  ps }  i^i  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  B ) } )
14 vex 2959 . . . . . . . . 9  |-  x  e. 
_V
15 vex 2959 . . . . . . . . 9  |-  y  e. 
_V
1614, 15prss 3952 . . . . . . . 8  |-  ( ( x  e.  B  /\  y  e.  B )  <->  { x ,  y } 
C_  B )
1716anbi1i 677 . . . . . . 7  |-  ( ( ( x  e.  B  /\  y  e.  B
)  /\  ps )  <->  ( { x ,  y }  C_  B  /\  ps ) )
18 ancom 438 . . . . . . 7  |-  ( ( ( x  e.  B  /\  y  e.  B
)  /\  ps )  <->  ( ps  /\  ( x  e.  B  /\  y  e.  B ) ) )
1917, 18bitr3i 243 . . . . . 6  |-  ( ( { x ,  y }  C_  B  /\  ps )  <->  ( ps  /\  ( x  e.  B  /\  y  e.  B
) ) )
2019opabbii 4272 . . . . 5  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ps ) }  =  { <. x ,  y >.  |  ( ps  /\  ( x  e.  B  /\  y  e.  B
) ) }
2111, 13, 203eqtr4i 2466 . . . 4  |-  ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ps ) }
22 opabresid 5194 . . . . 5  |-  { <. x ,  y >.  |  ( x  e.  B  /\  y  =  x ) }  =  (  _I  |`  B )
23 equcom 1692 . . . . . . . . 9  |-  ( x  =  y  <->  y  =  x )
2423anbi2i 676 . . . . . . . 8  |-  ( ( x  e.  B  /\  x  =  y )  <->  ( x  e.  B  /\  y  =  x )
)
25 eleq1 2496 . . . . . . . . . 10  |-  ( x  =  y  ->  (
x  e.  B  <->  y  e.  B ) )
2625biimpac 473 . . . . . . . . 9  |-  ( ( x  e.  B  /\  x  =  y )  ->  y  e.  B )
2726pm4.71i 614 . . . . . . . 8  |-  ( ( x  e.  B  /\  x  =  y )  <->  ( ( x  e.  B  /\  x  =  y
)  /\  y  e.  B ) )
2824, 27bitr3i 243 . . . . . . 7  |-  ( ( x  e.  B  /\  y  =  x )  <->  ( ( x  e.  B  /\  x  =  y
)  /\  y  e.  B ) )
29 an32 774 . . . . . . 7  |-  ( ( ( x  e.  B  /\  x  =  y
)  /\  y  e.  B )  <->  ( (
x  e.  B  /\  y  e.  B )  /\  x  =  y
) )
3016anbi1i 677 . . . . . . 7  |-  ( ( ( x  e.  B  /\  y  e.  B
)  /\  x  =  y )  <->  ( {
x ,  y } 
C_  B  /\  x  =  y ) )
3128, 29, 303bitri 263 . . . . . 6  |-  ( ( x  e.  B  /\  y  =  x )  <->  ( { x ,  y }  C_  B  /\  x  =  y )
)
3231opabbii 4272 . . . . 5  |-  { <. x ,  y >.  |  ( x  e.  B  /\  y  =  x ) }  =  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  x  =  y ) }
3322, 32eqtr3i 2458 . . . 4  |-  (  _I  |`  B )  =  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  x  =  y ) }
3421, 33uneq12i 3499 . . 3  |-  ( ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  u.  (  _I  |`  B ) )  =  ( { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ps ) }  u.  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  x  =  y ) } )
35 opsrtoslem.ps . . . . . . 7  |-  ( ps  <->  E. z  e.  D  ( ( x `  z
)  .<  ( y `  z )  /\  A. w  e.  D  (
w C z  -> 
( x `  w
)  =  ( y `
 w ) ) ) )
3635orbi1i 507 . . . . . 6  |-  ( ( ps  \/  x  =  y )  <->  ( E. z  e.  D  (
( x `  z
)  .<  ( y `  z )  /\  A. w  e.  D  (
w C z  -> 
( x `  w
)  =  ( y `
 w ) ) )  \/  x  =  y ) )
3736anbi2i 676 . . . . 5  |-  ( ( { x ,  y }  C_  B  /\  ( ps  \/  x  =  y ) )  <-> 
( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `
 z )  .< 
( y `  z
)  /\  A. w  e.  D  ( w C z  ->  (
x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) )
38 andi 838 . . . . 5  |-  ( ( { x ,  y }  C_  B  /\  ( ps  \/  x  =  y ) )  <-> 
( ( { x ,  y }  C_  B  /\  ps )  \/  ( { x ,  y }  C_  B  /\  x  =  y
) ) )
3937, 38bitr3i 243 . . . 4  |-  ( ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) )  <-> 
( ( { x ,  y }  C_  B  /\  ps )  \/  ( { x ,  y }  C_  B  /\  x  =  y
) ) )
4039opabbii 4272 . . 3  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) }  =  { <. x ,  y >.  |  ( ( { x ,  y }  C_  B  /\  ps )  \/  ( { x ,  y }  C_  B  /\  x  =  y )
) }
4110, 34, 403eqtr4ri 2467 . 2  |-  { <. x ,  y >.  |  ( { x ,  y }  C_  B  /\  ( E. z  e.  D  ( ( x `  z )  .<  (
y `  z )  /\  A. w  e.  D  ( w C z  ->  ( x `  w )  =  ( y `  w ) ) )  \/  x  =  y ) ) }  =  ( ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  u.  (  _I  |`  B ) )
429, 41syl6eq 2484 1  |-  ( ph  -> 
.<_  =  ( ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  u.  (  _I  |`  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706   {crab 2709    u. cun 3318    i^i cin 3319    C_ wss 3320   {cpr 3815   class class class wbr 4212   {copab 4265    _I cid 4493    We wwe 4540    X. cxp 4876   `'ccnv 4877    |` cres 4880   "cima 4881   ` cfv 5454  (class class class)co 6081    ^m cmap 7018   Fincfn 7109   NNcn 10000   NN0cn0 10221   Basecbs 13469   lecple 13536   ltcplt 14398  Tosetctos 14462   mPwSer cmps 16406    <bag cltb 16413   ordPwSer copws 16414
This theorem is referenced by:  opsrtoslem2  16545
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-i2m1 9058  ax-1ne0 9059  ax-rrecex 9062  ax-cnre 9063
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-recs 6633  df-rdg 6668  df-nn 10001  df-2 10058  df-3 10059  df-4 10060  df-5 10061  df-6 10062  df-7 10063  df-8 10064  df-9 10065  df-10 10066  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-ple 13549  df-psr 16417  df-opsr 16425
  Copyright terms: Public domain W3C validator