MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opsrtoslem2 Unicode version

Theorem opsrtoslem2 16226
Description: Lemma for opsrtos 16227. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
opsrso.o  |-  O  =  ( ( I ordPwSer  R
) `  T )
opsrso.i  |-  ( ph  ->  I  e.  V )
opsrso.r  |-  ( ph  ->  R  e. Toset )
opsrso.t  |-  ( ph  ->  T  C_  ( I  X.  I ) )
opsrso.w  |-  ( ph  ->  T  We  I )
opsrtoslem.s  |-  S  =  ( I mPwSer  R )
opsrtoslem.b  |-  B  =  ( Base `  S
)
opsrtoslem.q  |-  .<  =  ( lt `  R )
opsrtoslem.c  |-  C  =  ( T  <bag  I )
opsrtoslem.d  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
opsrtoslem.ps  |-  ( ps  <->  E. z  e.  D  ( ( x `  z
)  .<  ( y `  z )  /\  A. w  e.  D  (
w C z  -> 
( x `  w
)  =  ( y `
 w ) ) ) )
opsrtoslem.l  |-  .<_  =  ( le `  O )
Assertion
Ref Expression
opsrtoslem2  |-  ( ph  ->  O  e. Toset )
Distinct variable groups:    x, y, B    x, w, y, z, C    w, h, x, y, z, I    ph, w, x, y, z    w, D, x, y, z    w,  .< , x, y, z    w, R, x, y, z    w, T, x, y, z
Allowed substitution hints:    ph( h)    ps( x, y, z, w, h)    B( z, w, h)    C( h)    D( h)    R( h)    S( x, y, z, w, h)    .< ( h)    T( h)    .<_ ( x, y, z, w, h)    O( x, y, z, w, h)    V( x, y, z, w, h)

Proof of Theorem opsrtoslem2
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opsrtoslem.d . . . . . . . . 9  |-  D  =  { h  e.  ( NN0  ^m  I )  |  ( `' h " NN )  e.  Fin }
2 ovex 5883 . . . . . . . . . 10  |-  ( NN0 
^m  I )  e. 
_V
32rabex 4165 . . . . . . . . 9  |-  { h  e.  ( NN0  ^m  I
)  |  ( `' h " NN )  e.  Fin }  e.  _V
41, 3eqeltri 2353 . . . . . . . 8  |-  D  e. 
_V
54a1i 10 . . . . . . 7  |-  ( ph  ->  D  e.  _V )
6 opsrtoslem.c . . . . . . . 8  |-  C  =  ( T  <bag  I )
7 opsrso.i . . . . . . . 8  |-  ( ph  ->  I  e.  V )
8 opsrso.t . . . . . . . . 9  |-  ( ph  ->  T  C_  ( I  X.  I ) )
9 xpexg 4800 . . . . . . . . . 10  |-  ( ( I  e.  V  /\  I  e.  V )  ->  ( I  X.  I
)  e.  _V )
107, 7, 9syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  ( I  X.  I
)  e.  _V )
11 ssexg 4160 . . . . . . . . 9  |-  ( ( T  C_  ( I  X.  I )  /\  (
I  X.  I )  e.  _V )  ->  T  e.  _V )
128, 10, 11syl2anc 642 . . . . . . . 8  |-  ( ph  ->  T  e.  _V )
13 opsrso.w . . . . . . . 8  |-  ( ph  ->  T  We  I )
146, 1, 7, 12, 13ltbwe 16214 . . . . . . 7  |-  ( ph  ->  C  We  D )
15 opsrso.r . . . . . . . . 9  |-  ( ph  ->  R  e. Toset )
16 eqid 2283 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
17 eqid 2283 . . . . . . . . . . 11  |-  ( le
`  R )  =  ( le `  R
)
18 opsrtoslem.q . . . . . . . . . . 11  |-  .<  =  ( lt `  R )
1916, 17, 18tosso 14142 . . . . . . . . . 10  |-  ( R  e. Toset  ->  ( R  e. Toset  <->  ( 
.<  Or  ( Base `  R
)  /\  (  _I  |`  ( Base `  R
) )  C_  ( le `  R ) ) ) )
2019ibi 232 . . . . . . . . 9  |-  ( R  e. Toset  ->  (  .<  Or  ( Base `  R )  /\  (  _I  |`  ( Base `  R ) )  C_  ( le `  R ) ) )
2115, 20syl 15 . . . . . . . 8  |-  ( ph  ->  (  .<  Or  ( Base `  R )  /\  (  _I  |`  ( Base `  R ) )  C_  ( le `  R ) ) )
2221simpld 445 . . . . . . 7  |-  ( ph  ->  .<  Or  ( Base `  R ) )
23 opsrtoslem.ps . . . . . . . . 9  |-  ( ps  <->  E. z  e.  D  ( ( x `  z
)  .<  ( y `  z )  /\  A. w  e.  D  (
w C z  -> 
( x `  w
)  =  ( y `
 w ) ) ) )
2423opabbii 4083 . . . . . . . 8  |-  { <. x ,  y >.  |  ps }  =  { <. x ,  y >.  |  E. z  e.  D  (
( x `  z
)  .<  ( y `  z )  /\  A. w  e.  D  (
w C z  -> 
( x `  w
)  =  ( y `
 w ) ) ) }
2524wemapso 7266 . . . . . . 7  |-  ( ( D  e.  _V  /\  C  We  D  /\  .<  Or  ( Base `  R
) )  ->  { <. x ,  y >.  |  ps }  Or  ( ( Base `  R )  ^m  D ) )
265, 14, 22, 25syl3anc 1182 . . . . . 6  |-  ( ph  ->  { <. x ,  y
>.  |  ps }  Or  ( ( Base `  R
)  ^m  D )
)
27 opsrtoslem.s . . . . . . . 8  |-  S  =  ( I mPwSer  R )
28 opsrtoslem.b . . . . . . . 8  |-  B  =  ( Base `  S
)
2927, 16, 1, 28, 7psrbas 16124 . . . . . . 7  |-  ( ph  ->  B  =  ( (
Base `  R )  ^m  D ) )
30 soeq2 4334 . . . . . . 7  |-  ( B  =  ( ( Base `  R )  ^m  D
)  ->  ( { <. x ,  y >.  |  ps }  Or  B  <->  {
<. x ,  y >.  |  ps }  Or  (
( Base `  R )  ^m  D ) ) )
3129, 30syl 15 . . . . . 6  |-  ( ph  ->  ( { <. x ,  y >.  |  ps }  Or  B  <->  { <. x ,  y >.  |  ps }  Or  ( ( Base `  R )  ^m  D ) ) )
3226, 31mpbird 223 . . . . 5  |-  ( ph  ->  { <. x ,  y
>.  |  ps }  Or  B )
33 soinxp 4754 . . . . 5  |-  ( {
<. x ,  y >.  |  ps }  Or  B  <->  ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  Or  B
)
3432, 33sylib 188 . . . 4  |-  ( ph  ->  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  Or  B )
35 opsrso.o . . . . . . . 8  |-  O  =  ( ( I ordPwSer  R
) `  T )
36 fvex 5539 . . . . . . . 8  |-  ( ( I ordPwSer  R ) `  T
)  e.  _V
3735, 36eqeltri 2353 . . . . . . 7  |-  O  e. 
_V
38 opsrtoslem.l . . . . . . . 8  |-  .<_  =  ( le `  O )
39 eqid 2283 . . . . . . . 8  |-  ( lt
`  O )  =  ( lt `  O
)
4038, 39pltfval 14093 . . . . . . 7  |-  ( O  e.  _V  ->  ( lt `  O )  =  (  .<_  \  _I  )
)
4137, 40ax-mp 8 . . . . . 6  |-  ( lt
`  O )  =  (  .<_  \  _I  )
42 difundir 3422 . . . . . . . 8  |-  ( ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  u.  (  _I  |`  B ) )  \  _I  )  =  ( ( ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  \  _I  )  u.  ( (  _I  |`  B )  \  _I  ) )
43 resss 4979 . . . . . . . . . 10  |-  (  _I  |`  B )  C_  _I
44 ssdif0 3513 . . . . . . . . . 10  |-  ( (  _I  |`  B )  C_  _I  <->  ( (  _I  |`  B )  \  _I  )  =  (/) )
4543, 44mpbi 199 . . . . . . . . 9  |-  ( (  _I  |`  B )  \  _I  )  =  (/)
4645uneq2i 3326 . . . . . . . 8  |-  ( ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  \  _I  )  u.  (
(  _I  |`  B ) 
\  _I  ) )  =  ( ( ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  \  _I  )  u.  (/) )
47 un0 3479 . . . . . . . 8  |-  ( ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  \  _I  )  u.  (/) )  =  ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  \  _I  )
4842, 46, 473eqtri 2307 . . . . . . 7  |-  ( ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  u.  (  _I  |`  B ) )  \  _I  )  =  ( ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) 
\  _I  )
4935, 7, 15, 8, 13, 27, 28, 18, 6, 1, 23, 38opsrtoslem1 16225 . . . . . . . 8  |-  ( ph  -> 
.<_  =  ( ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  u.  (  _I  |`  B ) ) )
5049difeq1d 3293 . . . . . . 7  |-  ( ph  ->  (  .<_  \  _I  )  =  ( ( ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  u.  (  _I  |`  B ) ) 
\  _I  ) )
51 inss2 3390 . . . . . . . . . . . 12  |-  ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) 
C_  ( B  X.  B )
52 relxp 4794 . . . . . . . . . . . 12  |-  Rel  ( B  X.  B )
53 relss 4775 . . . . . . . . . . . 12  |-  ( ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  C_  ( B  X.  B )  -> 
( Rel  ( B  X.  B )  ->  Rel  ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) ) ) )
5451, 52, 53mp2 17 . . . . . . . . . . 11  |-  Rel  ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )
5554a1i 10 . . . . . . . . . 10  |-  ( ph  ->  Rel  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) )
56 df-br 4024 . . . . . . . . . . . . . 14  |-  ( a  _I  b  <->  <. a ,  b >.  e.  _I  )
57 vex 2791 . . . . . . . . . . . . . . 15  |-  b  e. 
_V
5857ideq 4836 . . . . . . . . . . . . . 14  |-  ( a  _I  b  <->  a  =  b )
5956, 58bitr3i 242 . . . . . . . . . . . . 13  |-  ( <.
a ,  b >.  e.  _I  <->  a  =  b )
60 brin 4070 . . . . . . . . . . . . . . . . . 18  |-  ( a ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a  <-> 
( a { <. x ,  y >.  |  ps } a  /\  a
( B  X.  B
) a ) )
6160simprbi 450 . . . . . . . . . . . . . . . . 17  |-  ( a ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a  ->  a ( B  X.  B ) a )
62 brxp 4720 . . . . . . . . . . . . . . . . . 18  |-  ( a ( B  X.  B
) a  <->  ( a  e.  B  /\  a  e.  B ) )
6362simprbi 450 . . . . . . . . . . . . . . . . 17  |-  ( a ( B  X.  B
) a  ->  a  e.  B )
6461, 63syl 15 . . . . . . . . . . . . . . . 16  |-  ( a ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a  ->  a  e.  B
)
65 sonr 4335 . . . . . . . . . . . . . . . . 17  |-  ( ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  Or  B  /\  a  e.  B )  ->  -.  a ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a )
6665ex 423 . . . . . . . . . . . . . . . 16  |-  ( ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  Or  B  ->  ( a  e.  B  ->  -.  a ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a ) )
6734, 64, 66syl2im 34 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( a ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a  ->  -.  a
( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a ) )
6867pm2.01d 161 . . . . . . . . . . . . . 14  |-  ( ph  ->  -.  a ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a )
69 breq2 4027 . . . . . . . . . . . . . . . 16  |-  ( a  =  b  ->  (
a ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a  <-> 
a ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) b ) )
70 df-br 4024 . . . . . . . . . . . . . . . 16  |-  ( a ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) b  <->  <. a ,  b >.  e.  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) )
7169, 70syl6bb 252 . . . . . . . . . . . . . . 15  |-  ( a  =  b  ->  (
a ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a  <->  <. a ,  b >.  e.  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) ) )
7271notbid 285 . . . . . . . . . . . . . 14  |-  ( a  =  b  ->  ( -.  a ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) a  <->  -.  <. a ,  b
>.  e.  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) ) )
7368, 72syl5ibcom 211 . . . . . . . . . . . . 13  |-  ( ph  ->  ( a  =  b  ->  -.  <. a ,  b >.  e.  ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) ) ) )
7459, 73syl5bi 208 . . . . . . . . . . . 12  |-  ( ph  ->  ( <. a ,  b
>.  e.  _I  ->  -.  <.
a ,  b >.  e.  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) ) )
7574con2d 107 . . . . . . . . . . 11  |-  ( ph  ->  ( <. a ,  b
>.  e.  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  ->  -.  <. a ,  b
>.  e.  _I  ) )
76 opex 4237 . . . . . . . . . . . 12  |-  <. a ,  b >.  e.  _V
77 eldif 3162 . . . . . . . . . . . 12  |-  ( <.
a ,  b >.  e.  ( _V  \  _I  ) 
<->  ( <. a ,  b
>.  e.  _V  /\  -.  <.
a ,  b >.  e.  _I  ) )
7876, 77mpbiran 884 . . . . . . . . . . 11  |-  ( <.
a ,  b >.  e.  ( _V  \  _I  ) 
<->  -.  <. a ,  b
>.  e.  _I  )
7975, 78syl6ibr 218 . . . . . . . . . 10  |-  ( ph  ->  ( <. a ,  b
>.  e.  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  ->  <. a ,  b >.  e.  ( _V  \  _I  ) ) )
8055, 79relssdv 4779 . . . . . . . . 9  |-  ( ph  ->  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  C_  ( _V  \  _I  )
)
81 disj2 3502 . . . . . . . . 9  |-  ( ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  i^i 
_I  )  =  (/)  <->  ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  C_  ( _V  \  _I  ) )
8280, 81sylibr 203 . . . . . . . 8  |-  ( ph  ->  ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  i^i 
_I  )  =  (/) )
83 disj3 3499 . . . . . . . 8  |-  ( ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  i^i 
_I  )  =  (/)  <->  ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  =  ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  \  _I  ) )
8482, 83sylib 188 . . . . . . 7  |-  ( ph  ->  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  =  ( ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  \  _I  ) )
8548, 50, 843eqtr4a 2341 . . . . . 6  |-  ( ph  ->  (  .<_  \  _I  )  =  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) )
8641, 85syl5eq 2327 . . . . 5  |-  ( ph  ->  ( lt `  O
)  =  ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) ) )
87 soeq1 4333 . . . . 5  |-  ( ( lt `  O )  =  ( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  -> 
( ( lt `  O )  Or  B  <->  ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  Or  B
) )
8886, 87syl 15 . . . 4  |-  ( ph  ->  ( ( lt `  O )  Or  B  <->  ( { <. x ,  y
>.  |  ps }  i^i  ( B  X.  B
) )  Or  B
) )
8934, 88mpbird 223 . . 3  |-  ( ph  ->  ( lt `  O
)  Or  B )
9027, 35, 8opsrbas 16220 . . . . 5  |-  ( ph  ->  ( Base `  S
)  =  ( Base `  O ) )
9128, 90syl5eq 2327 . . . 4  |-  ( ph  ->  B  =  ( Base `  O ) )
92 soeq2 4334 . . . 4  |-  ( B  =  ( Base `  O
)  ->  ( ( lt `  O )  Or  B  <->  ( lt `  O )  Or  ( Base `  O ) ) )
9391, 92syl 15 . . 3  |-  ( ph  ->  ( ( lt `  O )  Or  B  <->  ( lt `  O )  Or  ( Base `  O
) ) )
9489, 93mpbid 201 . 2  |-  ( ph  ->  ( lt `  O
)  Or  ( Base `  O ) )
9591reseq2d 4955 . . . 4  |-  ( ph  ->  (  _I  |`  B )  =  (  _I  |`  ( Base `  O ) ) )
96 ssun2 3339 . . . . 5  |-  (  _I  |`  B )  C_  (
( { <. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  u.  (  _I  |`  B ) )
9796a1i 10 . . . 4  |-  ( ph  ->  (  _I  |`  B ) 
C_  ( ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  u.  (  _I  |`  B ) ) )
9895, 97eqsstr3d 3213 . . 3  |-  ( ph  ->  (  _I  |`  ( Base `  O ) ) 
C_  ( ( {
<. x ,  y >.  |  ps }  i^i  ( B  X.  B ) )  u.  (  _I  |`  B ) ) )
9998, 49sseqtr4d 3215 . 2  |-  ( ph  ->  (  _I  |`  ( Base `  O ) ) 
C_  .<_  )
100 eqid 2283 . . . 4  |-  ( Base `  O )  =  (
Base `  O )
101100, 38, 39tosso 14142 . . 3  |-  ( O  e.  _V  ->  ( O  e. Toset  <->  ( ( lt
`  O )  Or  ( Base `  O
)  /\  (  _I  |`  ( Base `  O
) )  C_  .<_  ) ) )
10237, 101ax-mp 8 . 2  |-  ( O  e. Toset 
<->  ( ( lt `  O )  Or  ( Base `  O )  /\  (  _I  |`  ( Base `  O ) )  C_  .<_  ) )
10394, 99, 102sylanbrc 645 1  |-  ( ph  ->  O  e. Toset )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544   {crab 2547   _Vcvv 2788    \ cdif 3149    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   <.cop 3643   class class class wbr 4023   {copab 4076    _I cid 4304    Or wor 4313    We wwe 4351    X. cxp 4687   `'ccnv 4688    |` cres 4691   "cima 4692   Rel wrel 4694   ` cfv 5255  (class class class)co 5858    ^m cmap 6772   Fincfn 6863   NNcn 9746   NN0cn0 9965   Basecbs 13148   lecple 13215   ltcplt 14075  Tosetctos 14139   mPwSer cmps 16087    <bag cltb 16094   ordPwSer copws 16095
This theorem is referenced by:  opsrtos  16227
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-seqom 6460  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-oexp 6485  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-oi 7225  df-cnf 7363  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-uz 10231  df-fz 10783  df-hash 11338  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-plusg 13221  df-mulr 13222  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-poset 14080  df-plt 14092  df-toset 14140  df-psr 16098  df-ltbag 16105  df-opsr 16106
  Copyright terms: Public domain W3C validator