MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opswap Structured version   Unicode version

Theorem opswap 5358
Description: Swap the members of an ordered pair. (Contributed by NM, 14-Dec-2008.) (Revised by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
opswap  |-  U. `' { <. A ,  B >. }  =  <. B ,  A >.

Proof of Theorem opswap
StepHypRef Expression
1 cnvsng 5357 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  `' { <. A ,  B >. }  =  { <. B ,  A >. } )
21unieqd 4028 . . 3  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  U. `' { <. A ,  B >. }  =  U. { <. B ,  A >. } )
3 opex 4429 . . . 4  |-  <. B ,  A >.  e.  _V
43unisn 4033 . . 3  |-  U. { <. B ,  A >. }  =  <. B ,  A >.
52, 4syl6eq 2486 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  U. `' { <. A ,  B >. }  =  <. B ,  A >. )
6 uni0 4044 . . 3  |-  U. (/)  =  (/)
7 opprc 4007 . . . . . . 7  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
<. A ,  B >.  =  (/) )
87sneqd 3829 . . . . . 6  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  { <. A ,  B >. }  =  { (/) } )
98cnveqd 5050 . . . . 5  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  `' { <. A ,  B >. }  =  `' { (/)
} )
10 cnvsn0 5340 . . . . 5  |-  `' { (/)
}  =  (/)
119, 10syl6eq 2486 . . . 4  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  `' { <. A ,  B >. }  =  (/) )
1211unieqd 4028 . . 3  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  U. `' { <. A ,  B >. }  =  U. (/) )
13 ancom 439 . . . 4  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  ( B  e.  _V  /\  A  e.  _V )
)
14 opprc 4007 . . . 4  |-  ( -.  ( B  e.  _V  /\  A  e.  _V )  -> 
<. B ,  A >.  =  (/) )
1513, 14sylnbi 299 . . 3  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  -> 
<. B ,  A >.  =  (/) )
166, 12, 153eqtr4a 2496 . 2  |-  ( -.  ( A  e.  _V  /\  B  e.  _V )  ->  U. `' { <. A ,  B >. }  =  <. B ,  A >. )
175, 16pm2.61i 159 1  |-  U. `' { <. A ,  B >. }  =  <. B ,  A >.
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 360    = wceq 1653    e. wcel 1726   _Vcvv 2958   (/)c0 3630   {csn 3816   <.cop 3819   U.cuni 4017   `'ccnv 4879
This theorem is referenced by:  2nd1st  6394  cnvf1olem  6446  brtpos  6490  dftpos4  6500  tpostpos  6501  xpcomco  7200  fsumcnv  12559  gsumcom2  15551  txswaphmeolem  17838  fprodcnv  25309
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pr 4405
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-xp 4886  df-rel 4887  df-cnv 4888  df-dm 4890  df-rn 4891
  Copyright terms: Public domain W3C validator