MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opth1 Unicode version

Theorem opth1 4260
Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opth1.1  |-  A  e. 
_V
opth1.2  |-  B  e. 
_V
Assertion
Ref Expression
opth1  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  A  =  C )

Proof of Theorem opth1
StepHypRef Expression
1 opth1.1 . . . 4  |-  A  e. 
_V
21sneqr 3796 . . 3  |-  ( { A }  =  { C }  ->  A  =  C )
32a1i 10 . 2  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( { A }  =  { C }  ->  A  =  C ) )
4 opth1.2 . . . . . . . . 9  |-  B  e. 
_V
51, 4opi1 4256 . . . . . . . 8  |-  { A }  e.  <. A ,  B >.
6 id 19 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. A ,  B >.  = 
<. C ,  D >. )
75, 6syl5eleq 2382 . . . . . . 7  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { A }  e.  <. C ,  D >. )
8 oprcl 3836 . . . . . . 7  |-  ( { A }  e.  <. C ,  D >.  ->  ( C  e.  _V  /\  D  e.  _V ) )
97, 8syl 15 . . . . . 6  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( C  e.  _V  /\  D  e.  _V )
)
109simpld 445 . . . . 5  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  C  e.  _V )
11 prid1g 3745 . . . . 5  |-  ( C  e.  _V  ->  C  e.  { C ,  D } )
1210, 11syl 15 . . . 4  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  C  e.  { C ,  D } )
13 eleq2 2357 . . . 4  |-  ( { A }  =  { C ,  D }  ->  ( C  e.  { A }  <->  C  e.  { C ,  D } ) )
1412, 13syl5ibrcom 213 . . 3  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( { A }  =  { C ,  D }  ->  C  e.  { A } ) )
15 elsni 3677 . . . 4  |-  ( C  e.  { A }  ->  C  =  A )
1615eqcomd 2301 . . 3  |-  ( C  e.  { A }  ->  A  =  C )
1714, 16syl6 29 . 2  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( { A }  =  { C ,  D }  ->  A  =  C ) )
18 dfopg 3810 . . . . 5  |-  ( ( C  e.  _V  /\  D  e.  _V )  -> 
<. C ,  D >.  =  { { C } ,  { C ,  D } } )
197, 8, 183syl 18 . . . 4  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  <. C ,  D >.  =  { { C } ,  { C ,  D } } )
207, 19eleqtrd 2372 . . 3  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  { A }  e.  { { C } ,  { C ,  D } } )
21 elpri 3673 . . 3  |-  ( { A }  e.  { { C } ,  { C ,  D } }  ->  ( { A }  =  { C }  \/  { A }  =  { C ,  D } ) )
2220, 21syl 15 . 2  |-  ( <. A ,  B >.  = 
<. C ,  D >.  -> 
( { A }  =  { C }  \/  { A }  =  { C ,  D }
) )
233, 17, 22mpjaod 370 1  |-  ( <. A ,  B >.  = 
<. C ,  D >.  ->  A  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    = wceq 1632    e. wcel 1696   _Vcvv 2801   {csn 3653   {cpr 3654   <.cop 3656
This theorem is referenced by:  opth  4261  dmsnopg  5160  funcnvsn  5313  oprabid  5898  seqomlem2  6479  unxpdomlem3  7085  dfac5lem4  7769  dcomex  8089  canthwelem  8288  uzrdgfni  11037  gsum2d2  15241  cbcpcp  25265  constr3lem2  28392
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662
  Copyright terms: Public domain W3C validator