Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opth1 Structured version   Unicode version

Theorem opth1 4434
 Description: Equality of the first members of equal ordered pairs. (Contributed by NM, 28-May-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opth1.1
opth1.2
Assertion
Ref Expression
opth1

Proof of Theorem opth1
StepHypRef Expression
1 opth1.1 . . . 4
21sneqr 3966 . . 3
32a1i 11 . 2
4 opth1.2 . . . . . . . . 9
51, 4opi1 4430 . . . . . . . 8
6 id 20 . . . . . . . 8
75, 6syl5eleq 2522 . . . . . . 7
8 oprcl 4008 . . . . . . 7
97, 8syl 16 . . . . . 6
109simpld 446 . . . . 5
11 prid1g 3910 . . . . 5
1210, 11syl 16 . . . 4
13 eleq2 2497 . . . 4
1412, 13syl5ibrcom 214 . . 3
15 elsni 3838 . . . 4
1615eqcomd 2441 . . 3
1714, 16syl6 31 . 2
18 dfopg 3982 . . . . 5
197, 8, 183syl 19 . . . 4
207, 19eleqtrd 2512 . . 3
21 elpri 3834 . . 3
2220, 21syl 16 . 2
233, 17, 22mpjaod 371 1
 Colors of variables: wff set class Syntax hints:   wi 4   wo 358   wa 359   wceq 1652   wcel 1725  cvv 2956  csn 3814  cpr 3815  cop 3817 This theorem is referenced by:  opth  4435  dmsnopg  5341  funcnvsn  5496  oprabid  6105  seqomlem2  6708  unxpdomlem3  7315  dfac5lem4  8007  dcomex  8327  canthwelem  8525  uzrdgfni  11298  gsum2d2  15548  2trllemA  21550  2pthon  21602  2pthon3v  21604  constr3lem2  21633 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823
 Copyright terms: Public domain W3C validator