MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opth2 Unicode version

Theorem opth2 4248
Description: Ordered pair theorem. (Contributed by NM, 21-Sep-2014.)
Hypotheses
Ref Expression
opth2.1  |-  C  e. 
_V
opth2.2  |-  D  e. 
_V
Assertion
Ref Expression
opth2  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)

Proof of Theorem opth2
StepHypRef Expression
1 opth2.1 . 2  |-  C  e. 
_V
2 opth2.2 . 2  |-  D  e. 
_V
3 opthg2 4247 . 2  |-  ( ( C  e.  _V  /\  D  e.  _V )  ->  ( <. A ,  B >.  =  <. C ,  D >.  <-> 
( A  =  C  /\  B  =  D ) ) )
41, 2, 3mp2an 653 1  |-  ( <. A ,  B >.  = 
<. C ,  D >.  <->  ( A  =  C  /\  B  =  D )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788   <.cop 3643
This theorem is referenced by:  eqvinop  4251  opelxp  4719  fsn  5696  opiota  6290  canthwe  8273  ltresr  8762  diblsmopel  31361  cdlemn7  31393  dihordlem7  31404  xihopellsmN  31444  dihopellsm  31445  dihpN  31526
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649
  Copyright terms: Public domain W3C validator