MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oranabs Unicode version

Theorem oranabs 829
Description: Absorb a disjunct into a conjunct. (Contributed by Roy F. Longton, 23-Jun-2005.) (Proof shortened by Wolf Lammen, 10-Nov-2013.)
Assertion
Ref Expression
oranabs  |-  ( ( ( ph  \/  -.  ps )  /\  ps )  <->  (
ph  /\  ps )
)

Proof of Theorem oranabs
StepHypRef Expression
1 biortn 395 . . 3  |-  ( ps 
->  ( ph  <->  ( -.  ps  \/  ph ) ) )
2 orcom 376 . . 3  |-  ( ( -.  ps  \/  ph ) 
<->  ( ph  \/  -.  ps ) )
31, 2syl6rbb 253 . 2  |-  ( ps 
->  ( ( ph  \/  -.  ps )  <->  ph ) )
43pm5.32ri 619 1  |-  ( ( ( ph  \/  -.  ps )  /\  ps )  <->  (
ph  /\  ps )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 176    \/ wo 357    /\ wa 358
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
  Copyright terms: Public domain W3C validator