MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ord3ex Unicode version

Theorem ord3ex 4330
Description: The ordinal number 3 is a set, proved without the Axiom of Union ax-un 4641. (Contributed by NM, 2-May-2009.)
Assertion
Ref Expression
ord3ex  |-  { (/) ,  { (/) } ,  { (/)
,  { (/) } } }  e.  _V

Proof of Theorem ord3ex
StepHypRef Expression
1 df-tp 3765 . 2  |-  { (/) ,  { (/) } ,  { (/)
,  { (/) } } }  =  ( { (/)
,  { (/) } }  u.  { { (/) ,  { (/)
} } } )
2 pwpr 3953 . . . 4  |-  ~P { (/)
,  { (/) } }  =  ( { (/) ,  { (/) } }  u.  { { { (/) } } ,  { (/) ,  { (/) } } } )
3 pp0ex 4329 . . . . 5  |-  { (/) ,  { (/) } }  e.  _V
43pwex 4323 . . . 4  |-  ~P { (/)
,  { (/) } }  e.  _V
52, 4eqeltrri 2458 . . 3  |-  ( {
(/) ,  { (/) } }  u.  { { { (/) } } ,  { (/) ,  { (/) } } }
)  e.  _V
6 snsspr2 3891 . . . 4  |-  { { (/)
,  { (/) } } }  C_  { { { (/)
} } ,  { (/)
,  { (/) } } }
7 unss2 3461 . . . 4  |-  ( { { (/) ,  { (/) } } }  C_  { { { (/) } } ,  { (/) ,  { (/) } } }  ->  ( { (/) ,  { (/) } }  u.  { { (/)
,  { (/) } } } )  C_  ( { (/) ,  { (/) } }  u.  { { { (/) } } ,  { (/) ,  { (/) } } } ) )
86, 7ax-mp 8 . . 3  |-  ( {
(/) ,  { (/) } }  u.  { { (/) ,  { (/)
} } } ) 
C_  ( { (/) ,  { (/) } }  u.  { { { (/) } } ,  { (/) ,  { (/) } } } )
95, 8ssexi 4289 . 2  |-  ( {
(/) ,  { (/) } }  u.  { { (/) ,  { (/)
} } } )  e.  _V
101, 9eqeltri 2457 1  |-  { (/) ,  { (/) } ,  { (/)
,  { (/) } } }  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 1717   _Vcvv 2899    u. cun 3261    C_ wss 3263   (/)c0 3571   ~Pcpw 3742   {csn 3757   {cpr 3758   {ctp 3759
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-v 2901  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-nul 3572  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765
  Copyright terms: Public domain W3C validator