Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ordcmp Structured version   Unicode version

Theorem ordcmp 26199
Description: An ordinal topology is compact iff the underlying set is its supremum (union) only when the ordinal is  1o. (Contributed by Chen-Pang He, 1-Nov-2015.)
Assertion
Ref Expression
ordcmp  |-  ( Ord 
A  ->  ( A  e.  Comp  <->  ( U. A  =  U. U. A  ->  A  =  1o )
) )

Proof of Theorem ordcmp
StepHypRef Expression
1 orduni 4776 . . . 4  |-  ( Ord 
A  ->  Ord  U. A
)
2 unizlim 4700 . . . . . 6  |-  ( Ord  U. A  ->  ( U. A  =  U. U. A  <->  ( U. A  =  (/)  \/ 
Lim  U. A ) ) )
3 uni0b 4042 . . . . . . 7  |-  ( U. A  =  (/)  <->  A  C_  { (/) } )
43orbi1i 508 . . . . . 6  |-  ( ( U. A  =  (/)  \/ 
Lim  U. A )  <->  ( A  C_ 
{ (/) }  \/  Lim  U. A ) )
52, 4syl6bb 254 . . . . 5  |-  ( Ord  U. A  ->  ( U. A  =  U. U. A  <->  ( A  C_  { (/) }  \/  Lim  U. A ) ) )
65biimpd 200 . . . 4  |-  ( Ord  U. A  ->  ( U. A  =  U. U. A  ->  ( A  C_  { (/) }  \/  Lim  U. A
) ) )
71, 6syl 16 . . 3  |-  ( Ord 
A  ->  ( U. A  =  U. U. A  ->  ( A  C_  { (/) }  \/  Lim  U. A
) ) )
8 sssn 3959 . . . . . . 7  |-  ( A 
C_  { (/) }  <->  ( A  =  (/)  \/  A  =  { (/) } ) )
9 0ntop 16980 . . . . . . . . . . 11  |-  -.  (/)  e.  Top
10 cmptop 17460 . . . . . . . . . . 11  |-  ( (/)  e.  Comp  ->  (/)  e.  Top )
119, 10mto 170 . . . . . . . . . 10  |-  -.  (/)  e.  Comp
12 eleq1 2498 . . . . . . . . . 10  |-  ( A  =  (/)  ->  ( A  e.  Comp  <->  (/)  e.  Comp )
)
1311, 12mtbiri 296 . . . . . . . . 9  |-  ( A  =  (/)  ->  -.  A  e.  Comp )
1413pm2.21d 101 . . . . . . . 8  |-  ( A  =  (/)  ->  ( A  e.  Comp  ->  A  =  1o ) )
15 id 21 . . . . . . . . . 10  |-  ( A  =  { (/) }  ->  A  =  { (/) } )
16 df1o2 6738 . . . . . . . . . 10  |-  1o  =  { (/) }
1715, 16syl6eqr 2488 . . . . . . . . 9  |-  ( A  =  { (/) }  ->  A  =  1o )
1817a1d 24 . . . . . . . 8  |-  ( A  =  { (/) }  ->  ( A  e.  Comp  ->  A  =  1o ) )
1914, 18jaoi 370 . . . . . . 7  |-  ( ( A  =  (/)  \/  A  =  { (/) } )  -> 
( A  e.  Comp  ->  A  =  1o )
)
208, 19sylbi 189 . . . . . 6  |-  ( A 
C_  { (/) }  ->  ( A  e.  Comp  ->  A  =  1o ) )
2120a1i 11 . . . . 5  |-  ( Ord 
A  ->  ( A  C_ 
{ (/) }  ->  ( A  e.  Comp  ->  A  =  1o ) ) )
22 ordtop 26188 . . . . . . . . . . 11  |-  ( Ord 
A  ->  ( A  e.  Top  <->  A  =/=  U. A
) )
2322biimpd 200 . . . . . . . . . 10  |-  ( Ord 
A  ->  ( A  e.  Top  ->  A  =/=  U. A ) )
2423necon2bd 2655 . . . . . . . . 9  |-  ( Ord 
A  ->  ( A  =  U. A  ->  -.  A  e.  Top )
)
25 cmptop 17460 . . . . . . . . . 10  |-  ( A  e.  Comp  ->  A  e. 
Top )
2625con3i 130 . . . . . . . . 9  |-  ( -.  A  e.  Top  ->  -.  A  e.  Comp )
2724, 26syl6 32 . . . . . . . 8  |-  ( Ord 
A  ->  ( A  =  U. A  ->  -.  A  e.  Comp ) )
2827a1dd 45 . . . . . . 7  |-  ( Ord 
A  ->  ( A  =  U. A  ->  ( Lim  U. A  ->  -.  A  e.  Comp ) ) )
29 limsucncmp 26198 . . . . . . . . 9  |-  ( Lim  U. A  ->  -.  suc  U. A  e.  Comp )
30 eleq1 2498 . . . . . . . . . 10  |-  ( A  =  suc  U. A  ->  ( A  e.  Comp  <->  suc  U. A  e.  Comp )
)
3130notbid 287 . . . . . . . . 9  |-  ( A  =  suc  U. A  ->  ( -.  A  e. 
Comp 
<->  -.  suc  U. A  e.  Comp ) )
3229, 31syl5ibr 214 . . . . . . . 8  |-  ( A  =  suc  U. A  ->  ( Lim  U. A  ->  -.  A  e.  Comp ) )
3332a1i 11 . . . . . . 7  |-  ( Ord 
A  ->  ( A  =  suc  U. A  -> 
( Lim  U. A  ->  -.  A  e.  Comp ) ) )
34 orduniorsuc 4812 . . . . . . 7  |-  ( Ord 
A  ->  ( A  =  U. A  \/  A  =  suc  U. A ) )
3528, 33, 34mpjaod 372 . . . . . 6  |-  ( Ord 
A  ->  ( Lim  U. A  ->  -.  A  e.  Comp ) )
36 pm2.21 103 . . . . . 6  |-  ( -.  A  e.  Comp  ->  ( A  e.  Comp  ->  A  =  1o ) )
3735, 36syl6 32 . . . . 5  |-  ( Ord 
A  ->  ( Lim  U. A  ->  ( A  e.  Comp  ->  A  =  1o ) ) )
3821, 37jaod 371 . . . 4  |-  ( Ord 
A  ->  ( ( A  C_  { (/) }  \/  Lim  U. A )  -> 
( A  e.  Comp  ->  A  =  1o )
) )
3938com23 75 . . 3  |-  ( Ord 
A  ->  ( A  e.  Comp  ->  ( ( A  C_  { (/) }  \/  Lim  U. A )  ->  A  =  1o )
) )
407, 39syl5d 65 . 2  |-  ( Ord 
A  ->  ( A  e.  Comp  ->  ( U. A  =  U. U. A  ->  A  =  1o ) ) )
41 ordeleqon 4771 . . . . . . 7  |-  ( Ord 
A  <->  ( A  e.  On  \/  A  =  On ) )
42 unon 4813 . . . . . . . . . . 11  |-  U. On  =  On
4342eqcomi 2442 . . . . . . . . . 10  |-  On  =  U. On
4443unieqi 4027 . . . . . . . . 9  |-  U. On  =  U. U. On
45 unieq 4026 . . . . . . . . 9  |-  ( A  =  On  ->  U. A  =  U. On )
4645unieqd 4028 . . . . . . . . 9  |-  ( A  =  On  ->  U. U. A  =  U. U. On )
4744, 45, 463eqtr4a 2496 . . . . . . . 8  |-  ( A  =  On  ->  U. A  =  U. U. A )
4847orim2i 506 . . . . . . 7  |-  ( ( A  e.  On  \/  A  =  On )  ->  ( A  e.  On  \/  U. A  =  U. U. A ) )
4941, 48sylbi 189 . . . . . 6  |-  ( Ord 
A  ->  ( A  e.  On  \/  U. A  =  U. U. A ) )
5049orcomd 379 . . . . 5  |-  ( Ord 
A  ->  ( U. A  =  U. U. A  \/  A  e.  On ) )
5150ord 368 . . . 4  |-  ( Ord 
A  ->  ( -.  U. A  =  U. U. A  ->  A  e.  On ) )
52 unieq 4026 . . . . . . 7  |-  ( A  =  U. A  ->  U. A  =  U. U. A )
5352con3i 130 . . . . . 6  |-  ( -. 
U. A  =  U. U. A  ->  -.  A  =  U. A )
5434ord 368 . . . . . 6  |-  ( Ord 
A  ->  ( -.  A  =  U. A  ->  A  =  suc  U. A
) )
5553, 54syl5 31 . . . . 5  |-  ( Ord 
A  ->  ( -.  U. A  =  U. U. A  ->  A  =  suc  U. A ) )
56 orduniorsuc 4812 . . . . . . . 8  |-  ( Ord  U. A  ->  ( U. A  =  U. U. A  \/  U. A  =  suc  U.
U. A ) )
571, 56syl 16 . . . . . . 7  |-  ( Ord 
A  ->  ( U. A  =  U. U. A  \/  U. A  =  suc  U.
U. A ) )
5857ord 368 . . . . . 6  |-  ( Ord 
A  ->  ( -.  U. A  =  U. U. A  ->  U. A  =  suc  U.
U. A ) )
59 suceq 4648 . . . . . 6  |-  ( U. A  =  suc  U. U. A  ->  suc  U. A  =  suc  suc  U. U. A
)
6058, 59syl6 32 . . . . 5  |-  ( Ord 
A  ->  ( -.  U. A  =  U. U. A  ->  suc  U. A  =  suc  suc  U. U. A
) )
61 eqtr 2455 . . . . . 6  |-  ( ( A  =  suc  U. A  /\  suc  U. A  =  suc  suc  U. U. A
)  ->  A  =  suc  suc  U. U. A
)
6261ex 425 . . . . 5  |-  ( A  =  suc  U. A  ->  ( suc  U. A  =  suc  suc  U. U. A  ->  A  =  suc  suc  U.
U. A ) )
6355, 60, 62syl6c 63 . . . 4  |-  ( Ord 
A  ->  ( -.  U. A  =  U. U. A  ->  A  =  suc  suc  U. U. A ) )
64 onuni 4775 . . . . 5  |-  ( A  e.  On  ->  U. A  e.  On )
65 onuni 4775 . . . . 5  |-  ( U. A  e.  On  ->  U.
U. A  e.  On )
66 onsucsuccmp 26196 . . . . 5  |-  ( U. U. A  e.  On  ->  suc 
suc  U. U. A  e. 
Comp )
67 eleq1a 2507 . . . . 5  |-  ( suc 
suc  U. U. A  e. 
Comp  ->  ( A  =  suc  suc  U. U. A  ->  A  e.  Comp )
)
6864, 65, 66, 674syl 20 . . . 4  |-  ( A  e.  On  ->  ( A  =  suc  suc  U. U. A  ->  A  e.  Comp ) )
6951, 63, 68syl6c 63 . . 3  |-  ( Ord 
A  ->  ( -.  U. A  =  U. U. A  ->  A  e.  Comp ) )
70 id 21 . . . . . 6  |-  ( A  =  1o  ->  A  =  1o )
7170, 16syl6eq 2486 . . . . 5  |-  ( A  =  1o  ->  A  =  { (/) } )
72 0cmp 17459 . . . . 5  |-  { (/) }  e.  Comp
7371, 72syl6eqel 2526 . . . 4  |-  ( A  =  1o  ->  A  e.  Comp )
7473a1i 11 . . 3  |-  ( Ord 
A  ->  ( A  =  1o  ->  A  e. 
Comp ) )
7569, 74jad 157 . 2  |-  ( Ord 
A  ->  ( ( U. A  =  U. U. A  ->  A  =  1o )  ->  A  e. 
Comp ) )
7640, 75impbid 185 1  |-  ( Ord 
A  ->  ( A  e.  Comp  <->  ( U. A  =  U. U. A  ->  A  =  1o )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    = wceq 1653    e. wcel 1726    =/= wne 2601    C_ wss 3322   (/)c0 3630   {csn 3816   U.cuni 4017   Ord word 4582   Oncon0 4583   Lim wlim 4584   suc csuc 4585   1oc1o 6719   Topctop 16960   Compccmp 17451
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-1o 6726  df-er 6907  df-en 7112  df-fin 7115  df-topgen 13669  df-top 16965  df-bases 16967  df-topon 16968  df-cmp 17452
  Copyright terms: Public domain W3C validator