MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelinel Unicode version

Theorem ordelinel 4594
Description: The intersection of two ordinal classes is an element of a third if and only if either one of them is. (Contributed by David Moews, 1-May-2017.)
Assertion
Ref Expression
ordelinel  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( A  i^i  B )  e.  C  <->  ( A  e.  C  \/  B  e.  C ) ) )

Proof of Theorem ordelinel
StepHypRef Expression
1 ordtri2or3 4593 . . . 4  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  =  ( A  i^i  B )  \/  B  =  ( A  i^i  B
) ) )
213adant3 976 . . 3  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( A  =  ( A  i^i  B
)  \/  B  =  ( A  i^i  B
) ) )
3 eleq1 2426 . . . . 5  |-  ( A  =  ( A  i^i  B )  ->  ( A  e.  C  <->  ( A  i^i  B )  e.  C ) )
4 orc 374 . . . . 5  |-  ( A  e.  C  ->  ( A  e.  C  \/  B  e.  C )
)
53, 4syl6bir 220 . . . 4  |-  ( A  =  ( A  i^i  B )  ->  ( ( A  i^i  B )  e.  C  ->  ( A  e.  C  \/  B  e.  C ) ) )
6 eleq1 2426 . . . . 5  |-  ( B  =  ( A  i^i  B )  ->  ( B  e.  C  <->  ( A  i^i  B )  e.  C ) )
7 olc 373 . . . . 5  |-  ( B  e.  C  ->  ( A  e.  C  \/  B  e.  C )
)
86, 7syl6bir 220 . . . 4  |-  ( B  =  ( A  i^i  B )  ->  ( ( A  i^i  B )  e.  C  ->  ( A  e.  C  \/  B  e.  C ) ) )
95, 8jaoi 368 . . 3  |-  ( ( A  =  ( A  i^i  B )  \/  B  =  ( A  i^i  B ) )  ->  ( ( A  i^i  B )  e.  C  ->  ( A  e.  C  \/  B  e.  C ) ) )
102, 9syl 15 . 2  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( A  i^i  B )  e.  C  ->  ( A  e.  C  \/  B  e.  C ) ) )
11 inss1 3477 . . . 4  |-  ( A  i^i  B )  C_  A
12 ordin 4525 . . . . . . 7  |-  ( ( Ord  A  /\  Ord  B )  ->  Ord  ( A  i^i  B ) )
1312anim1i 551 . . . . . 6  |-  ( ( ( Ord  A  /\  Ord  B )  /\  Ord  C )  ->  ( Ord  ( A  i^i  B )  /\  Ord  C ) )
14133impa 1147 . . . . 5  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( Ord  ( A  i^i  B )  /\  Ord  C ) )
15 ordtr2 4539 . . . . 5  |-  ( ( Ord  ( A  i^i  B )  /\  Ord  C
)  ->  ( (
( A  i^i  B
)  C_  A  /\  A  e.  C )  ->  ( A  i^i  B
)  e.  C ) )
1614, 15syl 15 . . . 4  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( ( A  i^i  B ) 
C_  A  /\  A  e.  C )  ->  ( A  i^i  B )  e.  C ) )
1711, 16mpani 657 . . 3  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( A  e.  C  ->  ( A  i^i  B )  e.  C
) )
18 inss2 3478 . . . 4  |-  ( A  i^i  B )  C_  B
19 ordtr2 4539 . . . . 5  |-  ( ( Ord  ( A  i^i  B )  /\  Ord  C
)  ->  ( (
( A  i^i  B
)  C_  B  /\  B  e.  C )  ->  ( A  i^i  B
)  e.  C ) )
2014, 19syl 15 . . . 4  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( ( A  i^i  B ) 
C_  B  /\  B  e.  C )  ->  ( A  i^i  B )  e.  C ) )
2118, 20mpani 657 . . 3  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( B  e.  C  ->  ( A  i^i  B )  e.  C
) )
2217, 21jaod 369 . 2  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( A  e.  C  \/  B  e.  C )  ->  ( A  i^i  B )  e.  C ) )
2310, 22impbid 183 1  |-  ( ( Ord  A  /\  Ord  B  /\  Ord  C )  ->  ( ( A  i^i  B )  e.  C  <->  ( A  e.  C  \/  B  e.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715    i^i cin 3237    C_ wss 3238   Ord word 4494
This theorem is referenced by:  mreexexd  13760
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pr 4316
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-br 4126  df-opab 4180  df-tr 4216  df-eprel 4408  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498
  Copyright terms: Public domain W3C validator