MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordelssne Unicode version

Theorem ordelssne 4419
Description: Corollary 7.8 of [TakeutiZaring] p. 37. (Contributed by NM, 25-Nov-1995.)
Assertion
Ref Expression
ordelssne  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  <->  ( A  C_  B  /\  A  =/=  B
) ) )

Proof of Theorem ordelssne
StepHypRef Expression
1 ordtr 4406 . . 3  |-  ( Ord 
A  ->  Tr  A
)
2 tz7.7 4418 . . 3  |-  ( ( Ord  B  /\  Tr  A )  ->  ( A  e.  B  <->  ( A  C_  B  /\  A  =/= 
B ) ) )
31, 2sylan2 460 . 2  |-  ( ( Ord  B  /\  Ord  A )  ->  ( A  e.  B  <->  ( A  C_  B  /\  A  =/=  B
) ) )
43ancoms 439 1  |-  ( ( Ord  A  /\  Ord  B )  ->  ( A  e.  B  <->  ( A  C_  B  /\  A  =/=  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    e. wcel 1684    =/= wne 2446    C_ wss 3152   Tr wtr 4113   Ord word 4391
This theorem is referenced by:  ordelpss  4420  onelpss  4432  orduniorsuc  4621  ominf  7075
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-tr 4114  df-eprel 4305  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395
  Copyright terms: Public domain W3C validator